Section 0.8
 Quadratic Equations

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Recall: A linear equation is an equation of the form $a x+b=0$.

Definition

A quadratic equation in one variable x is an equation of the form

$$
a x^{2}+b x+c=0, \quad a \neq 0, b, c \text { are real numbers }
$$

To solve quadratic equation, we have two ways

- Factoring.
- Quadratic formula (powerful tool, but takes some time)

1. Solving by factoring

Example

Solve the equation $x^{2}+x-12=0$.
Solution:

$$
x^{2}+x-12=0
$$

$$
(x+4)(x-3)=0
$$

$$
x+4=0 \text { or } x-3=0
$$

$$
x=-4 \text { or } x=3
$$

Solution Set $=\{-4,3\}$

Exercise

Solve the equation $t^{2}+3 t+2=0$.

Example

Solve the equation $6 w^{2}-5 w=0$.
Solution: We take w as a common factor to get

$$
w(6 w-5)=0
$$

$$
w=0 \text { or }(6 w-5)=0
$$

$$
w=0 \text { or } w=\frac{5}{6}
$$

Solution Set $=\left\{0, \frac{5}{6}\right\}$

Open bracket

Example

Solve the equation $(3 x-4)(x+1)=-2$.
Solution: We multiple the two bracket to make the equation in the standard form.

$$
\begin{aligned}
3 x^{2}+3 x-4 x-4 & =-2 \\
3 x^{2}-x-2 & =0 \\
(3 x+2)(x-1) & =0 \\
3 x+2=0 \text { or } x-1 & =0 \\
x=\frac{-2}{3} \text { or } x & =1
\end{aligned}
$$

Solution Set $=\left\{\frac{-2}{3}, 1\right\}$

Taking common factor

Exercise

Solve the equation $4 x-4 x^{3}=0$.

Exercise

Solve the equation $x(x+2)^{2}(x+5)+x(x+2)^{3}=0$.
2. Solving by quadratic formula

Definition

The two solution for the quadratic equation $a x^{2}+b x+c=0$ are given

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example

Solve $x^{2}+x-24=0$
Solution: Here $a=1, b=1$, and $c=-24$. We substitute into the quadratic formula to get

$$
x=\frac{-1 \pm \sqrt{(1)^{2}-4(1)(-24)}}{2(1)}
$$

$$
x=\frac{-1 \pm \sqrt{97}}{2} \Rightarrow \text { Solution Set }=\left\{\frac{-1-\sqrt{97}}{2}, \frac{-1+\sqrt{97}}{2}\right\}
$$

Exercise

Solve the equation $9 y^{2}+6 \sqrt{2} y+2=0$.

Note: Sometimes we get only one solution to the quadratic equation.

Exercise

Solve the equation $z^{2}+z+1=0$.

Note: Sometimes we get no solution to the quadratic equation.

Example

Solve $\frac{1}{x^{6}}+\frac{9}{x^{3}}+8=0$.
Solution: We multiply both sides by x^{6} to get

$$
1+9 x^{3}+8 x^{6}=0
$$

which is the same as the equation

$$
1+9\left(x^{3}\right)+8\left(x^{3}\right)^{2}=0
$$

in which it has two solutions

$$
x^{3}=-1 \text { or } x^{3}=\frac{-1}{8}
$$

$$
\begin{gathered}
\sqrt[3]{-1}=\sqrt[3]{x^{3}} \text { or } \sqrt[3]{\frac{-1}{8}}=\sqrt[3]{x^{3}} \\
-1=x \text { or } \frac{-1}{2}=x
\end{gathered}
$$

Solution Set $=\left\{-1, \frac{-1}{2}\right\}$.

