# Section 1.2 Linear Inequality 

Dr. Abdulla Eid<br>College of Science

MATHS 103: Mathematics for Business I

## Comparison Operators

Let $a$ and $b$ be two real numbers of the number line.

- $a=b$.
- $a<b$ which is read as $a$ " is less than " $b$.
- $a>b$ which is read as $a$ " is greater than " $b$.
- $a \leq b$ which is read as $a$ " is less than or equal to " $b$.
- $a \geq b$ which is read as $a$ " is greater than or equal to " $b$.


## Intervals

Let $a<b$. Recall:

- $(a, b]: \quad a<x \leq b$.
- $[a, b): \quad a \leq x<b$.
- $(a, \infty): \quad a<x$.
- $(-\infty, a): x<a$.
- $(-\infty, \infty):-\infty<x<\infty$.


## Exercise

Describe each of the following interval in the number line and inequality symbols:
(1) $[2,5]$.
(2) $(-5, \infty)$.
(3) $(-\infty, 0]$.
(9) $[a, \infty)$.
(5) $(0,1)$.
(c) $[0,1]$.

## Definition

An inequality is a mathematical statement that uses inequality symbols $(<,>, \leq, \geq)$ to connect two expressions.

Goal: To solve inequalities that contain a variable. The answer will be written in the form of an interval, inequality symbols, and will be described in the number line.

## Definition

A linear inequality in the variable $x$ is an inequality that can be written in the form

$$
a x+b<0, \quad \text { or }>, \leq, \geq
$$

Rules of inequality:

- If $A+c<B$, then $A<B-c$. (As we did for the equations).
- If $c A<c B$, then $A<B$ if $c>0$. (As we did for the equations).
- If $c A<c B$, then $A>B$ if $c<0$. (Exception of what we did for the equations).


## Example

Solve $2(x-3)<4$
Solution: We solve linear inequality in the same way we solve linear equations (see Section 0.7) except if we multiply or divide by a negative number, then we need to reverse the inequality sign.

$$
\begin{aligned}
2(x-3) & <4 \\
2 x-6 & <4 \\
2 x & <4+6 \\
2 x & <10 \\
\frac{2 x}{2} & <\frac{10}{2} \\
x & <5
\end{aligned}
$$

## The Solution

1- Set notation

$$
\text { Solution Set }=\{x \mid \underbrace{x<5}_{\text {your answer }}\}
$$

2- Number Line notation

3- Interval notation

$$
(-\infty, 5)
$$

You can check your answer by picking any value in the solution set and substitute it in the original inequality. Take $x=0$. Then

$$
2(0-3) \square 4 \rightarrow-6 \square 4
$$

which we can fill it with $<$.

## Exercise

Solve $3<2 y+3$

## Example

Solve $4-2 x \leq 6$

## Solution:

$$
\begin{aligned}
4-2 x & \leq 6 \\
-2 x & \leq 6-4 \\
-2 x & \leq 2 \\
\frac{-2 x}{-2} & \geq \frac{2}{-2} \\
x & \geq-1
\end{aligned}
$$

## The Solution

1- Set notation

$$
\text { Solution Set }=\{x \mid-1 \leq x\}
$$

2- Number Line notation

3- Interval notation

$$
[-1, \infty)
$$

## Exercise

Solve $-3 \geq 8(2-x)$

## Example

Solve $\frac{3}{2}(x-2)+1>-2(x-4)$
Solution:

$$
\begin{aligned}
\frac{3}{2}(x-2)+1 & >-2(x-4) \\
2\left(\frac{3}{2}(x-2)\right)+2(1) & >2(-2(x-4)) \\
3(x-2)+2 & >-4(x-4) \\
3 x-6+2 & >-4 x+16 \\
3 x+4 x & >16+4 \\
7 x & >20 \\
\frac{7 x}{7} & >\frac{20}{7} \\
x & >\frac{20}{7}
\end{aligned}
$$

## The Solution

1- Set notation

$$
\text { Solution Set }=\left\{x \left\lvert\, x>\frac{20}{7}\right.\right\}
$$

2- Number Line notation

3- Interval notation

$$
\left(\frac{20}{7}, \infty\right)
$$

## Special Cases

## Example

Solve $2(x-2)>2 x+6$
Solution:

$$
\begin{aligned}
2(x-2) & >2 x+6 \\
2 x-4 & >2 x+6 \\
2 x-2 x & >6+4 \\
0 & >10
\end{aligned}
$$

Which is not true at all. Hence in the case that $x$ disappears and the last statement we got is incorrect we say that we don't have a solution!.

## The Solution

1- Set notation

$$
\text { Solution Set }=\{ \}=\varnothing \quad \text { ("The empty set })
$$

2- Number Line notation

3- Interval notation
$\varnothing$

## Special Cases

## Example

Solve $2 x+6<2(x+5)$
Solution:

$$
\begin{aligned}
2 x+6 & <2(x+5) \\
2 x+6 & <2 x+10 \\
2 x-2 x & <10-6 \\
0 & <4
\end{aligned}
$$

Which is always true. Hence in the case that $x$ disappears and the last statement we got is correct we say that all real numbers are solution. In short,

$$
-\infty<x<\infty
$$

## The Solution

1- Set notation

$$
\text { Solution Set }=\{x \mid-\infty<x<\infty\}
$$

2- Number Line notation

3- Interval notation

$$
(-\infty, \infty)
$$

