Section 2.3
 Combination of Functions

Dr. Abdulla Eid

College of Science
MATHS 103: Mathematics for Business I

Goal: To create new functions from old ones. This will define operations between functions that are similar to the operations between numbers. 1- Arithmetic Operations

Example

Let $f(x)=2 x^{2}$ and $g(x)=x-1$. Now a new function

$$
h(x)=f(x)+g(x)=2 x^{2}+x-1
$$

which is just adding the output of the function f and g. We denote h simply by $f+g$. Therefore,

$$
(f+g)(x)=f(x)+g(x)
$$

Note: $f+g$ is a function, while $(f+g)(x)$ is its output on input x.

Arithmetic Operations on Functions

Let f, g are two functions on the same domain and c is a constant.
(1) Sum:

$$
(f+g)(x)=f(x)+g(x)
$$

(2) Difference:

$$
(f-g)(x)=f(x)-g(x)
$$

(3) Product:

$$
(f \cdot g)(x)=f(x) \cdot g(x)
$$

(9) quotient:

$$
\left.\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad(g(x) \neq 0)\right)
$$

(5) Scalar Product:

$$
(c \cdot f)(x)=c \cdot f(x) \quad \text { special case of }(3)
$$

Example

If $f(x)=x^{2}-1$ and $g(x)=x^{2}+2 x$. Find
(1) $(f+g)(x)=f(x)+g(x)=\left(x^{2}-1\right)+\left(x^{2}+2 x\right)=2 x^{2}+2 x-1$.
(2) $(f-g)(3)=f(3)-g(3)=\left(3^{2}-1\right)-\left(3^{2}+2(3)\right)=-7$.
(3) $(f \cdot g)(x)=f(x) \cdot g(x)=\left(x^{2}-1\right) \cdot\left(x^{2}+2 x\right)=$ $x^{4}+2 x^{3}-x^{2}-2 x$
(9) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x^{2}-1}{x^{2}+2 x}$.

Exercise

Find the domain of $\frac{f}{g}$ from the previous example

2- Composition of Functions

This is a very important way to create a new function from old ones and will be used in Chapter 4 and in MATHS 104 next semester.

Suppose we have $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. We define $g \circ f: X \rightarrow Z$ by

$$
(g \circ f)(x)=g(f(x))
$$

The function f is called the inner function and the function g is called the outer function and \circ is called "composite" operation.

Example

If $f(x)=\sqrt{x}$ and $g(x)=x-1$. Find
(1) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x-1}$.
(2) $(g \circ f)(x)=g(f(x))=f(x)-1=\sqrt{x}-1$.

Exercise

Find the domain of $f \circ g$ and $g \circ f$ and show that they are different function.

Note: In general,

$$
f \circ g \neq g \circ f
$$

(Look at the previous example).

Exercise

Let $f(x)=x+3$ and $g(x)=x^{2}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.

Example
If $f(x)=\frac{1}{x^{2}+1}$ and $g(x)=\sqrt{x+2}$. Find
(1) $(f \circ g)(x)=f(g(x))=\frac{1}{(g(x))^{2}+1}=\frac{1}{(\sqrt{x+2})^{2}+1}=\frac{1}{x+2+1}=\frac{1}{x+3}$.
(2) $(g \circ f)(x)=g(f(x))=\sqrt{f(x)+2}=\sqrt{\frac{1}{x^{2}+1}+2}$.

Exercise

(Homework) Find the domain of $f \circ g$ and $g \circ f$.

Example

(Old Exam Question) Let $f(x)=2 x+5, g(x)=\frac{4}{x^{2}-9}, h(x)=\sqrt{3 x+1}$. Find the following
(1) $(f+g)(1)=f(1)+g(1)=7+\frac{-1}{2}=\frac{13}{2}$.
(2) $(g \circ h)(x)=g(h(x))=\frac{4}{(h(x))^{2}-9}=\frac{4}{(\sqrt{3 x+1})^{2}-9}=\frac{4}{3 x+1-9}=\frac{4}{3 x-8}$.
(3) $(h \circ f)(x)=h(f(x))=\sqrt{3(f(x))+1}=\sqrt{3(2 x+5)+1}=$ $\sqrt{6 x+16}$.
(4) $(f \circ g)(1)=f(g(1))=f\left(\frac{-1}{2}\right)=2\left(\frac{-1}{2}\right)+5=4$.

Exercise

Find the domain of $(h \circ f)(x)$ and $(g \circ h)(x)$ from the example above.

Finding the inner and outer functions

This will be useful later in MATHS 104.

Example

Find f and g such that $h(x)=g(f(x))$.
(1) $h(x)=\sqrt{x^{2}-2}$.
(2) $h(x)=\frac{3}{x^{2}+x+1}$.
(3) $h(x)=\sqrt[4]{\frac{x^{2}-1}{x+3}}$.

Exercise

Find f and g such that $h(x)=g(f(x))$.
(1) $h(x)=(2 x-1)^{3}$.
(2) $h(x)=\frac{2-(3 x-5)}{(3 x-5)^{2}+2}$..

