Section 2.4 Inverse Functions

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

(1) Definition of inverse function.
(2) Finding the inverse function.

1- Definition of inverse function

Recall:

- If a is a number, then $a-a=0=-a+a$. $-a$ is an inverse of a with respect to the addition + .
- If a is a non-zero number, then $a \frac{1}{a}=1=\frac{1}{a} a$. $\frac{1}{a}$ is an inverse of a with respect to the multiplication \cdot
- If f is a function, we want to find an "inverse" g to f with respect to the composite \circ, i.e., we want to find g (which is called the inverse) such that

$$
(f \circ g)(x)=x \text { and }(g \circ f)(x)=x
$$

usually, we denote it by f^{-1}.
If f is a "nice" function, we want to find an "inverse" g
Note: Not every function has an inverse! (we will see the horizontal line test later).

Finding the inverse function

Step 0: Write $y=f(x)$.
Step 1: Exchange x and y in step 0 .
Step 2: Solve the literal equation in step 1 for y (see Section 0.7).

Example

(Old Exam Question) Find the inverse of $g(x)=5 x-3$.
Solution: Step 0: Write $y=g(x)$.

$$
y=5 x-3
$$

Step 1: Exchange x and y in step 0 .

$$
x=5 y-3
$$

Step 2: Solve the literal equation in step 1 for y

$$
\begin{aligned}
x & =5 y-3 \\
x+3 & =5 y
\end{aligned}
$$

Continue...

Step 2: Solve the literal equation in step 1 for y

$$
\begin{aligned}
x & =5 y-3 \\
x+3 & =5 y \\
\frac{x+3}{5} & =y
\end{aligned}
$$

Hence we have

$$
g^{-1}(x)=\frac{x+3}{5}
$$

To check you answer, we have to check that $g\left(g^{-1}(x)\right)=x$ and $g^{-1}(g(x))=x$.
(1)

$$
\begin{aligned}
g\left(g^{-1}(x)\right) & =5\left(g^{-1}(x)\right)-3 \\
& =\left(\frac{x+3}{5}\right)-3 \\
& =(x+3)-3 \\
& =x
\end{aligned}
$$

(2)

$$
\begin{aligned}
g^{-1}(g(x)) & =\frac{g(x)+3}{5} \\
& =\frac{(5 x-3)+3}{5} \\
& =\frac{5 x}{5} \\
& =x
\end{aligned}
$$

Exercise

Find the inverse of $F(x)=(4 x-5)^{2}$.

Exercise

Find the inverse of $y=\frac{3}{2} x+\frac{7}{5}$.

