Section 3.1 Lines

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

Introduction

Recall: If we have a linear function $y=a x+b$, then by plotting two points on the graph of this function and connecting them, we get the graph of the function which is a line. (See Section 2.5)

Goal: Given two points on the line (i.e., we are given $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right)\right)$. Find the equation of the line.

Note: We will need only one point $\left(x_{1}, y_{1}\right)$ and the slope m of the line. Topics:
(1) Slope.
(2) Equation of a line (multiple forms).
(3) Parallel and Perpendicular lines.

1 - The slope of a line

(1) The slope of a line is a number that measures how sloppy the line is (how hard to climb the stairs!).
(1) Consider the two lines L_{1} and L_{2} (both of positive slope), but you can see that L_{1} has slope greater than L_{2}.
(2) Slope has a clear relation with the angle between the line and the x-axis. if the slope rises, then θ rises too!.

Finding the slope of a line

(1) From the equation of the line: Solve the equation for y, i.e., let y be alone. Then, you get

$$
y=m x+b
$$

and the slope is m.
(2) From the graph of the line: Choose any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the line. Then,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Vertical change }}{\text { Horizontal change }}
$$

Special Case: The vertical line has no slope. Why?

Example

Find the slope of the line that passes through
(1) $(3,-1)$ and $(6,9)$.
(2) $(-6,7)$ and $(0,1)$.

Solution:
(1) $(\underbrace{3}_{x_{1}}, \underbrace{-1}_{y_{1}})$ and $(\underbrace{6}_{x_{2}}, \underbrace{9}_{y_{2}})$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-(-1)}{6-3}=\frac{10}{3}
$$

Which means for every 3 steps to the right, we need to go 10 steps up. (2) $(\underbrace{-6}_{x_{1}}, \underbrace{7}_{y_{1}})$ and $(\underbrace{0}_{x_{2}}, \underbrace{1}_{y_{2}})$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-7)}{0-(-6)}=\frac{-6}{6}=\frac{-1}{1} .
$$

Which means for every one step to the right, we need to go one step down.

Exercise

Find the slope of the line that passes through
$(1)(5,2)$ and $(4,-3)$.
(2) $(1,7)$ and $(-9,0)$.
(3) $(5,2)$ and $(4,2)$.
(4) $(3,1)$ and $(3,3)$.

2 - Equation of the line

To get the equation of a line, you need to find

- One point on the line $\left(x_{1}, y_{1}\right)$ and
- The slope of the line m.

Then, the equation of the line is

$$
y-y_{1}=m\left(x-x_{1}\right) \quad---\quad \text { "point-slope form" }
$$

Other forms:
General Linear Form $a x+b y+c=0$, where a, b, and c have no common factor.

Slope-Intercept Form $y=m x+b$, where m is the slope of the line and $(0, b)$ is the y-intercept.
Special Case: The equation of the vertical line is $x=x_{1}$.

Example

Find a general linear equation $(a x+b y+c=0)$ of the line with the following properties:
(1) passes through $(1,-7)$ and has slope -3 .

Solution:

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-7)=-3(x-1) \\
y+7=-3 x+3 \\
y+3 x+7-3=0 \\
y+3 x+4=0
\end{array}
$$

Example

Find a general linear equation $(a x+b y+c=0)$ of the line with the following properties:
(2) passes through $(-3,4)$ and $(6,-4)$.

Solution: First we find the slope m which is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-4}{6-(-3)}=\frac{-8}{9}
$$

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-4=\frac{-8}{9}(x-(-3)) \\
y-4=\frac{-8}{9}(x+3) \\
9(y-4)=-8(x+3) \\
9 y-36=-8 x-24 \\
9 y+8 x-36+24=0 \\
9 y+8 x-12=0
\end{array}
$$

Example

Find a general linear equation $(a x+b y+c=0)$ of the line with the following properties:
(3) has slope 4 and y-intercept -4 .

Solution:

$$
\begin{array}{r}
y=m x+b \\
y=4 x-4 \\
y-4 x+4=0
\end{array}
$$

Example

Find a general linear equation $(a x+b y+c=0)$ of the line with the following properties:
(4) is a vertical line passes through $(-2,-7)$.

Solution:

$$
\begin{array}{r}
x=x_{1} \\
x=-2 \\
x+2=0
\end{array}
$$

Exercise

Find a general linear form equation of the line that
(1) passes $(-5,5)$ and has slope $\frac{-1}{3}$.
(2) passes $(2,4)$ and $(-1,3)$.
(3) has slope $\frac{-2}{3}$ and y-intercept -2 .
(4) vertical line passes $(8,0)$.
(5) Horizontal line passes $(2,5)$.

Example

Find the slope and the y-intercept of a line with equation $y=5(2-3 x)$ and sketch its graph.

Solution: We need to write the equation in the slope-intercept form (i.e., we isloate y).

$$
\begin{array}{r}
y=5(2-3 x) \\
y=10-15 x \\
y=-15 x+10
\end{array}
$$

so we have

$$
\text { Slope }=\frac{-15}{1} \text { and } y \text {-intercept }=(0,10)
$$

To sketch the graph of the line, we start at the point $(0,10)$ and for every one step to the right, we go 15 steps down.

Exercise

Find the slope and the y-intercept general linear form equation of the line that
(1) $2 x=5-3 y$.
(2) $3(x-4)-7(y+1)=2$.
(3) $y=\frac{1}{2} x+8$.
(4) $\frac{-x}{3}+\frac{3}{2} y=-1 \frac{1}{2}$.

Example

Find a (a) general linear equation and (b) slope-intercept form of the line with an equation:
(1) $2 x=5-3 y$.

Solution: (a) General Linear form:

$$
\begin{array}{r}
2 x=5-3 y \\
2 x+3 y-5=0
\end{array}
$$

(b) Slope-intercept form:

$$
\begin{array}{r}
2 x=5-3 y \\
2 x-5=-3 y \\
\frac{2}{-3} x-\frac{5}{-3}=y
\end{array}
$$

Example

Find a (a) general linear equation and (b) slope-intercept form of the line with an equation:
(2) $3(x-4)-7(y+1)=2$.

Solution: (a) General Linear form:

$$
\begin{array}{r}
3(x-4)-7(y+1)=2 \\
3 x-12-7 y-7=2 \\
3 x-7 y-19-2=0 \\
3 x-7 y-21=0
\end{array}
$$

(b) Slope-intercept form:

$$
\begin{array}{r}
3 x-7 y-21=0 \\
3 x-21=7 y \\
\frac{3}{7} x-\frac{21}{7}=y \\
\frac{3}{7} x-3=y
\end{array}
$$

Example

Find a (a) general linear equation and (b) slope-intercept form of the line with an equation:
(3) $y=\frac{1}{2} x+8$.

Solution: (a) General Linear form:

$$
\begin{array}{r}
y=\frac{1}{2} x+8 \\
2 y=x+16 \\
2 y-x-16=0
\end{array}
$$

(b) Slope-intercept form:

$$
y=\frac{1}{2} x+8
$$

Example

Find a (a) general linear equation and (b) slope-intercept form of the line with an equation:
(4) $\frac{-x}{3}+\frac{3}{2} y=-1 \frac{1}{2}$.

Solution: (a) General Linear form:

$$
\begin{array}{r}
\frac{-x}{3}+\frac{3}{2} y=-1 \frac{1}{2} \\
-x+\frac{9}{2} y=-3 \frac{1}{2} \\
-2 x+9 y=-9 \\
-2 x+9 y+9=0
\end{array}
$$

(b) Slope-intercept form:

$$
\begin{array}{r}
-2 x+9 y+9=0 \\
9 y=2 x-9 \\
y=\frac{2}{9} x-\frac{9}{9}
\end{array}
$$

3 - Parallel and Perpendicular Lines

Definition

- Two lines are parallel if

$$
m_{1}=m_{2}
$$

- Two lines are perpendicular if

$$
m_{1} m_{2}=-1
$$

Example

Determine whether the given lines are parallel, perpendicular, or neither? (1) $y=-5 x+7$ and $y=-5 x-2$.

Solution:

$$
m_{1}=-5 \text { and } m_{2}=-5
$$

So the two lines are parallel.

Example

Determine whether the given lines are parallel, perpendicular, or neither? (2) $x+3 y+5=0$ and $y=3 x$.

Solution:

$$
\begin{array}{r}
3 y=-x+5 \text { and } y=3 x \\
3 y=\frac{-1}{3} x+\frac{5}{3} \text { and } y=3 x \\
m_{1}=\frac{-1}{3} \text { and } m_{2}=3
\end{array}
$$

Now $m_{1} m_{2}=\left(\frac{-1}{3}\right) 3=-1$. Thus the two lines are perpendicular lines.

Example

Determine whether the given lines are parallel, perpendicular, or neither? (2) $x-2=3$ and $y=2$.

Solution:

$$
\begin{array}{r}
x-2=3 \text { and } y=2 \\
x=5 \text { and } y=2 \\
m_{1}=\text { undefined and } m_{2}=0
\end{array}
$$

Note that the line without slope is a vertical line. The line with a slope of zero is a horizontal line. Thus the two lines are perpendicular lines.

Exercise

Determine whether the given lines are parallel, perpendicular, or neither? (1) $x+2 y=0$ and $x+4 y-7=0$.
(2) $x=3$ and $x=-2$.
(3) $y=4 x+7$ and $4 x-y+6=0$.

Example

Find an equation of the line (1) Passes $(2,1)$ and parallel to the line $y-4 x+6=0$.

Solution: We need to find the slope first, since both lines are parallel, they have the same slope, so we have

$$
m_{1}=m_{2}=4
$$

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=4(x-1) \\
y=4 x-3
\end{array}
$$

Example

Find an equation of the line (2) Passes $(3,3)$ and perpendicular to the line $2 x+3 y-2=0$.

Solution: We need to find the slope first, since both lines are perpendicular, then

$$
m_{1} m_{2}=-1
$$

We need to find m_{2} to find m_{1}. In order to find m_{2}, we solve the equation for y.

$$
\begin{array}{r}
2 x+3 y-2=0 \\
3 y=-2 x+2 \\
y=\frac{-2}{3} x+\frac{2}{3}
\end{array}
$$

Example

Find an equation of the line
(2) Passes $(3,3)$ and perpendicular to the line $2 x+3 y-2=0$.

Solution: So $m=\frac{-2}{3}$. Thus we have

$$
\begin{aligned}
m_{1} m_{2} & =-1 \\
\frac{-2}{3} m_{1} & =-1 \\
m_{1} & =\frac{3}{2}
\end{aligned}
$$

So the equation of the line is

$$
\begin{array}{r}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=\frac{3}{2}(x-3) \\
2 y-6=3 x-9 \\
2 y-3 x+3=0
\end{array}
$$

Exercise

Find the equation of the line that
(1) parallel to $2 x+3 y+6=0$ and passes $(-7,-9)$.
(2) Perpendicular to $3 y=\frac{-5}{2} x+7$ and passes $(4,-1)$.

Exercise

(Old Exam Question)

(1) Find the slope and the y-intercept of $3 x+6 y-12=0$.
(2) Find an equation of the line passing through $(1,-2)$ and parallel to $2 y=5-8 x$.
(3) Find an equation of the line passing through $(2,1)$ and perpendicular to $3 y+x=18$.

