Section 3.3
 Quadratic functions

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Introduction

Recall:

- A quadratic function is

$$
f(x)=a x^{2}+b x+c, \quad a \neq 0
$$

- The graph of a quadratic function is called parabola.
- The vertex is the point $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
- y-intercept is $(0, c)$.
- x-intercept is the solution of $a x^{2}+b x+c=0$. (use the formula in Section 0.8).
- The domain is $(-\infty, \infty)$.
- The range is either $\left[f\left(\frac{-b}{2 a}\right), \infty\right)$ or $\left(-\infty, f\left(\frac{-b}{2 a}\right)\right]$ depending its open upward or downward.

Example

Sketch the graph of $y=x^{2}+4 x-12$.
Solution:
Here we have $a=1, b=4, c=-12$.
(1) Since $a=1>0$, the parabola is upward.
(2) Vertex $=\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)=\left(\frac{-4}{-2}, f\left(\frac{-4}{2}\right)\right)=(-2, f(-2))=(-2,-16)$.
(3) y-intercept is $(0,-12)$.
(4) x-intercept: we solve $x^{2}+4 x-12=0$ to get

$$
x=-6 \text { or } x=2 \quad \text { using the formula in Section } 0.8
$$

The x-intercept are the points

$$
(-6,0) \text { or }(2,0)
$$

(5) Range $=[-16, \infty)$.

Exercise

Sketch the graph of $y=-x^{2}+6 x-5$.

Example

Sketch the graph of $y=x^{2}+4 x+4$.
Solution:
Here we have $a=1, b=4, c=4$.
(1) Since $a=1>0$, the parabola is upward.
(2) $\operatorname{Vertex}=\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)=\left(\frac{-4}{2}, f\left(\frac{-4}{2}\right)\right)=(-2, f(-2))=(-2,0)$.
(3) y-intercept is $(0,4)$.
(4) x-intercept: we solve $x^{2}+4 x+4=0$ to get

$$
x=-2 \quad \text { using the formula in Section } 0.8
$$

The x-intercept are the points

$$
(-2,0)
$$

(5) Range $=[0, \infty)$.

Exercise

Sketch the graph of $y=x^{2}+x+1$.

Example

The demand function is $p=f(q)=4-2 q$, where p is the price and q is the number of units. Find the level of production that maximize the total revenue.

Solution:

$$
\begin{aligned}
& \text { Total Revenue }=(\text { price per unit })(\text { number of units }) \\
& \text { Total Revenue }=(4-2 q)(q) \\
& \text { Total Revenue }=4 q-2 q^{2}
\end{aligned}
$$

The maximum will be at the vertex, so we have

$$
\text { Vertex }=\frac{-b}{2 a}=\frac{-4}{2(-2)}=\frac{-4}{-4}=1
$$

So the maximum is at $q=1$ and $p=4-2(1)=2$.

Exercise
(Old Exam Question) The demand function for a product is $p=80-2 q$. Find the quantity that maximize the revenue.

Example

(Inverse of Quadratic Functions)

(a) Does the quadratic function $f(x)=a x^{2}+b x+c(a \neq 0)$ has an inverse? Why? What is the name of the test?
(b)Find the inverse function and deduce that $f^{-1}(x)$ is not a quadratic function.

Solution: (b) Let the domain be $\left[\frac{-b}{2 a}, \infty\right)$. To find the inverse, we follow the three steps of Section 2.4.
Step 0: Write $y=f(x)$.

$$
y=a x^{2}+b x+c
$$

Step 1: Exchange x and y in step 0 .

$$
x=a y^{2}+b y+c
$$

Step 2: Solve the literal equation in step 1 for y

$$
x=a y^{2}+b y+c
$$

Continue...

$$
\begin{aligned}
& x=a y^{2}+b y+x \\
& 0=a y^{2}+b y+c-x
\end{aligned}
$$

$$
y=\frac{-b \pm \sqrt{b^{2}-4 a(c-x)}}{2 a}
$$

By the formula in Section 0.8

So we take only one of them which is with the positive sign, so we have

$$
f^{-1}(x)=\frac{-b+\sqrt{b^{2}-4 a(c-x)}}{2 a}
$$

which is not a quadratic function!

