Section 3.4
 System of Linear Equations

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Linear System

Definition

A system of linear equations in two variables x and y is a list of linear equations

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

$$
a_{n} x+b_{n} y=c_{n}
$$

Goal: Find values for x and y such that all the equations above are true at the same time.

Geometry

- One way to solve such system is to graph each equation and the solution will be the point of intersection.
- There are two disadvantages of this way:
(1) We need to graph many equations accurately.
(2) It is hard to generalize it to linear systems of more than two variables or for non-linear systems.

Algebra

1- Elimination Method:

Example

Solve the following system:

$$
\begin{align*}
x+4 y & =3 \tag{1}\\
-3 x+2 y & =-5 \tag{2}
\end{align*}
$$

Solution: We try to eliminate y first, so we multiple the Equation (1) by 2 and the Equation (2) by -4 to get

$$
\begin{align*}
2 x+8 y & =6 \tag{3}\\
12 x-8 y & =20 \tag{4}
\end{align*}
$$

Now adding (3) and (4) yield $14 x=26$ and solving for x we get

$$
14 x=26 \rightarrow x=\frac{26}{14}=\frac{13}{7}
$$

Example

Solve the following system:

$$
\begin{align*}
x+4 y & =3 \tag{1}\\
-3 x+2 y & =-5 \tag{2}
\end{align*}
$$

Now we substitute the value of x in either Equation (1) or (2) to find the missing y. We will substitute in Equation (1) to get

$$
\begin{aligned}
\frac{13}{7}+4 y & =3 \rightarrow 4 y=3-\frac{13}{7} \\
4 y & =\frac{8}{7} \\
y & =\frac{8}{28}=\frac{2}{7}
\end{aligned}
$$

Solution Set $=\{(\underbrace{\frac{13}{7}}_{x}, \underbrace{\frac{2}{7}}_{v})\}$

Exercise

Solve the same example above, but eliminate x first.

$$
\begin{align*}
x+4 y & =3 \tag{1}\\
-3 x+2 y & =-5 \tag{2}
\end{align*}
$$

Example

(Elimination Method) Solve the following system:

$$
\begin{align*}
& 5 x-2 y=1 \tag{5}\\
& 3 x+3 y=9 \tag{6}
\end{align*}
$$

Solution: We try to eliminate x first, so we multiple the Equation (5) by 3 and the Equation (6) by -5 to get

$$
\begin{align*}
15 x-6 y & =3 \tag{7}\\
-15 x-15 y & =-45 \tag{8}
\end{align*}
$$

Now adding (7) and (8) yield $-21 y=-42$ and solving for y we get

$$
-21 y=-42 \rightarrow y=\frac{-42}{-21}=2
$$

Example

Solve the following system:

$$
\begin{align*}
& 5 x-2 y=1 \tag{5}\\
& 3 x+3 y=9 \tag{6}
\end{align*}
$$

Now we substitute the value of y in either Equation (5) or (6) to find the missing x. We will substitute in Equation (6) to get

$$
\begin{aligned}
3 x+3 y & =9 \rightarrow 3 x=9-3(2) \\
3 x & =3 \\
x & =\frac{3}{3}=1
\end{aligned}
$$

Solution Set $=\{(\underbrace{1}_{x}, \underbrace{2}_{y})\}$

Exercise

Solve the following system of equations:

$$
\begin{aligned}
& 7 x-4 y=-4 \\
& 2 x-5 y=-5
\end{aligned}
$$

2- Substitution Method:
This method will be more useful in solving non-linear systems in Section 3.5 and Section 3.6.

Example

(Substitution Method) Solve the following system:

$$
\begin{array}{r}
2 x-y=1 \\
-x+2 y=7 \tag{10}
\end{array}
$$

Solution: Using Equation (9), solve for y (isolate y) in term of x to get

$$
\begin{equation*}
y=2 x-1 \tag{11}
\end{equation*}
$$

Now substitute y from Equation (11) into Equation (10) to get an equation in x only.

$$
-x+2(2 x-1)=7
$$

Continue...

$$
\begin{array}{r}
-x+2(2 x-1)=7 \\
-x+4 x-2=7 \\
3 x=9 \\
x=3
\end{array}
$$

Substitute back in Equation (11) $(y=2 x-1)$ we get

$$
y=2(3)-1=5
$$

$$
\text { Solution Set }=\{(\underbrace{3}_{x}, \underbrace{5}_{y})\}
$$

Exercise

Solve using the substitution method the following system of equations:

$$
\begin{aligned}
-x+2 y & =7 \\
5 x+3 y & =-9
\end{aligned}
$$

