Section 3.6
 Application of systems of Equations

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Equilibrium Point

Definition
The equilibrium point is the point where the demand and supply meets.

Example

Find the equilibrium point if the supply and demand equations are $p=\frac{q}{40}+10$ and $p=\frac{8000}{q}$, respectively.

Solution: We need to solve the system

$$
\begin{array}{r}
p=\frac{q}{40}+10 \\
p=\frac{8000}{q} \tag{2}
\end{array}
$$

Substituting Equation (2) directly into Equation (1), we get

$$
\frac{8000}{q}=\frac{q}{40}+10
$$

Continue...

$$
\begin{aligned}
\frac{8000}{q} & =\frac{q}{40}+10 \quad \text { Multiply by } q \\
8000 & =\frac{q^{2}}{40}+10 q \quad \text { Multiply by } 40 \\
32000 & =q^{2}+400 q \\
0 & =q^{2}+400 q-32000 \\
q=400 \text { or } q & =-800(\text { rejected }) \text { by the Formula, (Section } 0.8)
\end{aligned}
$$

Substitute back in Equation (2) ($p=\frac{8000}{q}$) we get

$$
p=\frac{8000}{q}=\frac{8000}{400}=20
$$

Example

(Old Exam Question) Find the equilibrium point if the supply and demand equations are $p=\sqrt{29+5 q}$ and $p=15-q$, respectively. Moreover, find the revenue at the equilibrium point.

Solution: We need to solve the system

$$
\begin{array}{r}
p=\sqrt{29+5 q} \\
p=15-q \tag{4}
\end{array}
$$

Substituting Equation (4) directly into Equation (3), we get

$$
15-q=\sqrt{29+5 q}
$$

Continue...

$$
\begin{aligned}
15-q & =\sqrt{29+5 q} \\
(15-q)^{2} & =(\sqrt{29+5 q})^{2} \\
225-30 q+q^{2} & =29+5 q \\
q^{2}-35 q+196 & =0 \\
q=28 \text { or } q & =7 \text { by the Formula, (Section } 0.8 \text {) }
\end{aligned}
$$

Substitute back in Equation (2) $(p=15-q)$ we get

$$
p=-13(\text { rejected }) \text { or } p=8
$$

Hence $q=8$ and $p=7$. Total Revenue $=p q=8(7)=56$.

Example

(Break-even Points) A manufacturer sells a product at 4 BD per unit. If the fixed cost is 2000 BD and the variable cost is 2 BD per unit. Find the break-even point (i.e., the point where the total cost is equal to the total revenue (No profit)).

Solution: Recall that

$$
\begin{array}{r}
\text { Total Revenue }=(\text { price per unit })(\text { number of units sold })=4 q \\
\text { Total cost }=\text { fixed cost }+ \text { variable cost }=2000+2 q
\end{array}
$$

In order to get the break-even point, we must have

$$
\begin{aligned}
\text { Total Revenue } & =\text { Total cost } \\
4 q & =2000+2 q \\
2 q & =2000 \\
q & =1000
\end{aligned}
$$

So $p=4(1000)=4000$ BD.

Exercise

Find the break-even point if the total revenue is $3 \sqrt{q}$ and the total cost is $2 q+500$.

Exercise

(Old Exam Question) Find the equilibrium point of

$$
\begin{aligned}
\text { Demand: } & 25 q-2 p+320 \\
\text { Demand: } \quad 45 q+p-505 & =0
\end{aligned}
$$

Exercise

(Old Final Exam Question) For a certain product, the material cost is 4 BDS per unit and the fixed cost is 50600 BD . If the price per unit is 6.5 $B D$. Find the total break-even point.

