Section 4.1 Exponential Functions

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Topics

(1) Exponential Function, graph, and its properties.
(2) Compound Interest (Application to Finance).
(3) The Euler Number e.

1- The Exponential Function

Definition

The function

$$
f(x)=a^{x}, \quad a>0, a \neq 1
$$

is called an exponential function. The number a is called the base and x is called the exponent (power).

Recall: Rule for the exponent
(1) $a^{x} \cdot a^{y}=a^{x+y}$.
(2) $\frac{a^{x}}{a^{y}}=a^{x-y}$.
(3) $\left(a^{x}\right)^{y}=a^{x y}$.
(4) $(a b)^{x}=a^{x} b^{y}$.
(5) $a^{-x}=\frac{1}{a^{x}}$.
(0) $a^{0}=1$.
(1) $a^{1}=a$.

Graphing Exponential Function with $a>1$

Example

Graph the function

$$
f(x)=3^{x}
$$

Solution:Using the calculator, we fill the following table

x	-2	-1	0	1	2	3
y						

- Domain $=(-\infty, \infty)$.
- Co-domain $=(-\infty, \infty)$.
- Range $=(0, \infty)$.
- y-intercept $=(0,1)$.
- x-intercept $=$ none.

Exercise

Graph $f(x)=7^{x}$ and observe the difference with the previous example.

Graphing Exponential Function with $0<a<1$

Example

Graph the function

$$
f(x)=\left(\frac{1}{3}\right)^{x}
$$

Solution:Using the calculator, we fill the following table

x	-2	-1	0	1	2	3
y						

- Domain $=(-\infty, \infty)$.
- Co-domain $=(-\infty, \infty)$.
- Range $=(0, \infty)$.
- y-intercept $=(0,1)$.
- x-intercept $=$ none.

Exercise

Graph $f(x)=\left(\frac{1}{7}\right)^{x}$ and observe the difference with the previous example.

Summary

$$
y=f(x)=a^{x}
$$

- Domain $=(-\infty, \infty)$.
- Co-domain $=(-\infty, \infty)$.
- Range $=(0, \infty)$.
- y-intercept $=(0,1)$.
- x-intercept $=$ none.

Graphing Exponential Function with $a>1$

Example

Graph the function

$$
f(x)=3^{x+1}-2
$$

Solution:Using the calculator, we fill the following table

x	-3	-2	-1	0	1	2	3
y							

- Domain $=(-\infty, \infty)$.
- Co-domain $=(-\infty, \infty)$.
- Range $=(-2, \infty)$.
- y-intercept $=(0,1)$.
- x-intercept $=$ later in Section 4.4.

2 - Compound Interest

Example

Suppose you save 100 BD in a saving account that pays 1% annually. Find the total money in your account every year.

Solution: Let A_{n} be the amount in the account in year n, i.e., A_{2} is the amount in the account after 2 years.

- Year 0: $A_{0}=100 \mathrm{BD}$.
- Year 1: $A_{1}=100+100(0.01)=101 \mathrm{BD}$.

Year 1: $A_{1}=A_{0}+A_{0}(r)=A_{0}(1+r)$.

- Year 2: $A_{2}=101+101(0.01)=102.1 \mathrm{BD}$.

Year 2:
$A_{2}=A_{1}+A_{1}(r)=A_{1}(1+r)=A_{0}(1+r)(1+r)=A_{0}(1+r)^{2}$.

- Year 3: $A_{3}=102.1+102.1(0.01)=103.03 \mathrm{BD}$.

Year 3: $A_{3}=A_{2}+A_{2}(r)=A_{2}(1+r)=A_{0}(1+r)^{3}$.

- Year n: $A_{n}=A_{n-1}+A_{n-1}(r)=A_{n-1}(1+r)=A_{0}(1+r)^{n}$.

So in any year n, we have

$$
A_{n}=P(1+r)^{n}
$$

Example

Suppose you saved 3000 BD at 5% for 3 years. Find the compound amount and the compound interest.

Solution: $n=3, P=3000$, and $r=5 \%=0.05$. We have that $A_{3}=P(1+r)^{n}=3000(1+0.05)^{3}=3472.875 \mathrm{BD}$.
The total interest is $I=A_{3}-P=3472.875-3000=472.875 \mathrm{BD}$.

The compound interest formula

In general, if the interest are given periodically (say m times a year), the formula is

$$
A_{n}=P\left(1+\frac{r}{m}\right)^{m n}
$$

Example

Find the compund interest and the compound interest of (a) 500 BD for 7 years at 11% semi-annually

Solution: $n=7, P=500, r=11 \%=0.11$, and $m=2$. We have that $A_{7}=P\left(1+\frac{r}{m}\right)^{n m}=500\left(1+\frac{0.11}{2}\right)^{3 \cdot 2}=1658.04 \mathrm{BD}$.
The total interest is $I=A_{7}-P=1658.04-500=1158.04$ BD.

Example

Find the compund interest and the compound interest of (b) 4000 BD for 15 years at 8.5% quarterly

Solution: $n=15, P=4000, r=8.5 \%=0.085$, and $m=4$. We have that $A_{15}=P\left(1+\frac{r}{m}\right)^{n m}=4000\left(1+\frac{0.085}{4}\right)^{15 \cdot 4}=14124.86 \mathrm{BD}$.
The total interest is $I=A_{15}-P=14124.86-4000=10124.86 \mathrm{BD}$.

Exercise

Find the compound amount and the compound interest of investing
(1) 300 BD at 7% for 9 years compounded yearly.
(2) 200 BD at 5% for 6 years compounded monthly.
(3) 1000 BD at 9% for 2 years compounded semi-annually.
(9) 200 BD at 1% for 2 years compounded daily (365 days in one year).
(5) (Old exam question) 11000 BD at 3% for 9 years compounded monthly.
(0) (Old exam question) 1020 BD at 6% for 8 years compounded monthly.

3 - The Euler Number

Example

(Motivational Example) Suppose you invest 1 BD in an account that pays 100%. Find the compound amount for one year in every possible period. What happen if the interest are paid continuously in every single moment?

Solution: $P=1, r=100 \%=1, n=1, m=m$. So the compound amount is

$$
A_{1}=P\left(1+\frac{r}{m}\right)^{n m}=1\left(1+\frac{1}{m}\right)^{m}
$$

Continue...

$$
A_{1}=\left(1+\frac{1}{m}\right)^{m}
$$

Period	m	A_{m}
yearly	1	
semi-annually	2	
quarterly	4	
monthly	12	
daily	365	
hourly	$365(24)$	
Minutely	$365(24)(60)$	
secondly	$365(24)(60)(60)$	
mini-secondly	$365(24)(60)(60)(10)^{3}$	
micro-secondly	$365(24)(60)(60)(10)^{6}$	
nano-secondly	$365(24)(60)(60)(10)^{9}$	
Continuously	∞	

As you can see from the example above that as $m \rightarrow \infty$, $A_{1} \rightarrow 2.718281828 \ldots$. We define

$$
2.718281828 \cdots=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}=e
$$

- e is called the Euler number.
- e is not a rational number,i.e., the decimal expansion of e never ends nor repeat in a pattern.

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots
$$

Exercise

Find the value of (a) $e^{2.5}$
(b) e^{-1}
(c) $e^{\frac{1}{3}}$.

Graphing Exponential Function with $a>1$

Example
Graph the function

$$
f(x)=-e^{-x+3}
$$

Solution:Using the calculator, we fill the following table

x	-2	-1	0	1	2	3
y						

