Section 4.2 Logarithmic Functions

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

1 - The Logarithmic Functions

Recall:

- The exponential function is

$$
f(x)=a^{x}, \quad a>0, a \neq 1
$$

- The general shape of $y=a^{x}$ is either
- Domain $=(-\infty, \infty)$.
- Range $=(0, \infty)$.

Question: Is $f(x)$ has an inverse? Why?
Answer: Yes, by the horizontal line test and the graph of the inverse function $f^{-1}(x)$ is either

- $f^{-1}(x)$ is called logarithmic function base a and it is denoted by

$$
f^{-1}(x)=\log _{a} x
$$

Note: (The fundamental equations)
(1) $f\left(f^{-1}\right)(x)=x$, so we have $a^{\log _{a} x}=x$.
(2) $f^{-1}(f(x))=x$, so we have $\log _{a} a^{x}=x$.

2 - Exponential and Logarithmic forms

We have the following

$$
\underbrace{\log _{a} x=y}_{\text {logarithmic form }} \text { if and only if } \underbrace{x=a^{y}}_{\text {exponential form }}
$$

Example

Convert from logarithmic form to exponential form and vice versa.
(1) $3^{2}=9 \Longleftrightarrow 2=\log _{3} 9$.
(2) $\log _{2} 1024=10 \Longleftrightarrow 1024=2^{10}$.
(3) $e^{-5}=y \Longleftrightarrow-5=\log _{e} y$.
(1) $8^{\frac{2}{3}}=4 \Longleftrightarrow \frac{2}{3}=\log _{8} 4$.
(5) $\log _{2} \frac{1}{32}=-5 \Longleftrightarrow \frac{1}{32}=2^{-5}$.
(0) $3^{0}=1 \Longleftrightarrow 0=\log _{3} 1$.

Exercise

Convert from the exponential form into logarithmic form and vice versa
(1) $\log _{7} x=5$.
(2) $\log _{2} \sqrt{2}=\frac{1}{2}$.
(3) $9^{3}=729$.
(c) $5^{\frac{1}{3}}=\sqrt[3]{5}$.

Example

Solve for x the equation $\log _{3} x=4$.
Solution: We convert it into exponential form to get

$$
x=3^{4}=81
$$

Solution set $=\{81\}$.

Example

Solve for x the equation $\log _{x} 4=\frac{1}{2}$.
Solution: We convert it into exponential form to get

$$
\begin{aligned}
4 & =x^{\frac{1}{2}} \\
4^{2} & =\left(x^{\frac{1}{2}}\right)^{2} \\
16 & =x
\end{aligned}
$$

Solution set $=\{16\}$.

Example

Solve for x the equation $\log _{4} x=-4$.
Solution: We convert it into exponential form to get

$$
x=4^{-4}=\frac{1}{256}
$$

Solution set $=\left\{\frac{1}{256}\right\}$.

Exercise

Solve for x the equations
(1) $\log _{5} x=3$.
(2) $\log _{3} 1=0$.
(3) $\log _{a} 1=0$.
(9) $\log _{x}(2 x+8)=2$.

Notation

- If $a=10$, then we simply write $\log _{10}$ as \log and it is called the common logarithm.
- If $a=e=2.718281828 \ldots$, then we simply write $\log _{e}$ as \ln and it is called the natural logarithm.

