Section 4.2 Logarithmic Functions

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

1 - The Logarithmic Functions

Recall:

• The exponential function is

$$f(x) = a^x, \qquad a > 0, a \neq 1$$

• The general shape of $y = a^x$ is either

- Domain $=(-\infty,\infty)$.
- Range = $(0, \infty)$.

Question: Is f(x) has an inverse? Why? Answer: Yes, by the horizontal line test and the graph of the inverse function $f^{-1}(x)$ is either

• $f^{-1}(x)$ is called **logarithmic function** base *a* and it is denoted by

 $f^{-1}(x) = \log_a x$

Note: (The fundamental equations)

•
$$f(f^{-1})(x) = x$$
, so we have $a^{\log_a x} = x$.

2
$$f^{-1}(f(x)) = x$$
, so we have $\log_a a^x = x$.

2 - Exponential and Logarithmic forms

We have the following

Example

Convert from logarithmic form to exponential form and vice versa.

1
$$3^2 = 9 \iff 2 = \log_3 9.$$

2 $\log_2 1024 = 10 \iff 1024 = 2^{10}$
3 $e^{-5} = y \iff -5 = \log_e y.$
4 $8^{\frac{2}{3}} = 4 \iff \frac{2}{3} = \log_8 4.$
5 $\log_2 \frac{1}{32} = -5 \iff \frac{1}{32} = 2^{-5}.$
5 $3^0 = 1 \iff 0 = \log_3 1.$

Exercise

Convert from the exponential form into logarithmic form and vice versa

1
$$\log_7 x = 5.$$

2 $\log_2 \sqrt{2} = \frac{1}{2}.$
3 $9^3 = 729.$
4 $5^{\frac{1}{3}} = \sqrt[3]{5}.$

Or. Applulls

Example

Solve for x the equation $\log_3 x = 4$.

Solution: We convert it into exponential form to get

$$x = 3^4 = 81$$

Solution set = $\{81\}$.

Example

Solve for x the equation $\log_x 4 = \frac{1}{2}$.

Solution: We convert it into exponential form to get

$$4 = x^{\frac{1}{2}}$$

$$4^{2} = (x^{\frac{1}{2}})^{2}$$

$$16 = x$$

Solution set =
$$\{16\}$$
.

Example

Solve for x the equation $\log_4 x = -4$.

Solution: We convert it into exponential form to get

$$x = 4^{-4} = \frac{1}{256}$$

Solution set =
$$\left\{\frac{1}{256}\right\}$$
.

Exercise

Solve for x the equations

1
$$\log_5 x = 3.$$

2
$$\log_3 1 = 0.$$

$$o \log_a 1 = 0.$$

$$\log_x(2x+8) = 2.$$

Notation

- If *a* = 10, then we simply write log₁₀ as log and it is called the **common logarithm**.
- If a = e = 2.718281828..., then we simply write \log_e as In and it is called the **natural logarithm**.