Section 4.3
 Properties of Logarithms

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Properties

(1) $\log _{a}(m \cdot n)=\log _{a} m+\log _{a} n$.
(2) $\log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$.
(3) $\log _{a} m^{r}=r \log _{a} m$.
(1) $\log _{a} 1=0$.
(3) $\log _{a} a=1$.
(0. (change of bases) $\log _{a} m=\frac{\log _{b} m}{\log _{b} a}$.

Proof (Not required)

First recall the fundamental equations: (The fundamental equations)
(1) $a^{\log _{a} x}=x$.
(2) $\log _{a} a^{x}=x$.

1- We want to prove that

$$
\log _{a}(m n)=\log _{a} m+\log _{a} n
$$

which is the same as proving the exponential form of the above which is

$$
m n=a^{\log _{a} m+\log _{a} n}
$$

RHS $=a^{\log _{a} m+\log _{a} n}=a^{\log _{a} m} a^{\log _{a} n}=m n=$ LHS.
2- (exercise).
3- (exercise).

Proof (Not required)

4- We want to prove that $\log _{a} 1=0$. Let $\log _{a} 1=x$. We have in the exponential form that $1=a^{x}$, which is $a^{0}=a^{x}$ and so $x=0$.
5 - We want to prove that $\log _{a} a=1$. Let $\log _{a} a=x$. We have in the exponential form that $a=a^{x}$, so $x=1$.
6 - We want to prove that

$$
\log _{a} m=\frac{\log _{b} m}{\log _{b} a}
$$

which is the same as proving

$$
\log _{a} m \cdot \log _{b} a=\log _{b} m
$$

which is the same as proving the exponential form of the above which is

$$
b^{\log _{a} m \log _{b} a}=m
$$

$\mathrm{LHS}=b^{\log _{a} m \log _{b} a}=\left(b^{\log _{b} a}\right)^{\log _{a} m}=a^{\log _{a} m}=m=$ RHS.

Example

Let $\log 2=a, \log 3=b$, and $\log 5=c$. Find in terms of a, b, and c the following
(1) $\log 6=\log (2 \cdot 3)=\log 2+\log 3=a+b$.
(2) $\log 15=\log (3 \cdot 5)=\log 3+\log 5=b+c$.
(3) $\log 60=\log \left(2^{2} \cdot 3 \cdot 5\right)=\log 2^{2}+\log 3+\log 5=2 \log 2+\log 3+\log 5=$ $2 a+b+c$.
(c) $\log _{2} 3=\frac{\log 3}{\log 2}=\frac{b}{c}$.
(($\log 1000=\log \left(2^{3} \cdot 5^{3}\right)=\log 2^{3}+\log 5^{3}=3 \log 2+3 \log 5=3 a+3 c$.

Exercise

In the previous exercise, find
(1) $\log _{5} 3$
(2) $\log 10$
(3) $\log 0.00002$.
(4) $\log \frac{25}{6}$.

Exercise

If $\log _{a} 5=0.83$ and $\log _{a} 3=0.56$. Find
(1) $\log _{a} 15$
(2) $\log _{a} 25$
(3) $\log _{a}(\sqrt{3})$.

Example

(Expansion) Write the following expression as sum or difference of logarithms
(1) $\ln \left(\frac{x}{w z^{2}}\right)=\ln x-\ln \left(w z^{2}\right)=\ln x-\left(\ln w+\ln z^{2}\right)=\ln x-\ln w-2 \ln z$.
(2) $\ln \left(\frac{x+1}{x+5}\right)^{4}=4 \ln \left(\frac{x+1}{x+5}\right)=4(\ln (x+1)-\ln (x+5))$.
(3) $\ln \left(\frac{\sqrt{x}}{\left(x^{2}\right)(x+3)^{4}}\right)=\ln \sqrt{x}-\ln x^{2}-\ln (x+3)^{4}=$

$$
\ln x^{\frac{1}{2}}-2 \ln x-4 \ln (x+3)=\frac{1}{2} \ln x-2 \ln x-4 \ln (x+3)=
$$

$$
-\frac{3}{2} \ln x-4 \ln (x+3)
$$

Exercise

Write each of the following expression as sum or difference of logarithms:
(1) $\log _{3}\left(\frac{5 \cdot 7}{4}\right)$
(2) $\log _{2}\left(\frac{x^{5}}{y^{2}}\right)$
(3) $\log \left(\frac{x^{2} z}{w y^{2}}\right)$.

Example

(Single Logarithm) Write each of the following as a single logarithm.
(1) $\log 6+\log 4=\log (6 \cdot 4)=\log 24$.
(2) $2 \log x-\frac{1}{2} \log (x-3)=\log x^{2}-\log (x-3)^{\frac{1}{2}}=\log \frac{x^{2}}{(x-3)^{\frac{1}{2}}}$.
(3) $2+10 \log 3=2 \log 10+10 \log 3=\log 10^{2}+\log 3^{10}=\log \left(10^{2} \cdot 3^{10}\right)$.

Exercise

Write each of the following as a single logarithm.
(1) $2 \log _{5} 3+3 \log _{5} 2$.
(2) $3 \log _{a} x-\log _{a}(x+1)$.
(3) $\log _{4} 25+\log _{4} 3-\log _{4} 5$.
(9) $\log _{5} 8-\log _{5} x$.
(5) $\log _{10} 27-\log 3$.
(6) $\log _{3}\left(x^{2}+5\right)-\log _{3}\left(x^{2}+1\right)$.

First recall the fundamental equations: (The fundamental equations)
(1) $a^{\log _{a} x}=x$.
(2) $\log _{a} a^{x}=x$.

Example

Find the value of the following:
(1) $\log _{5} 5^{212}=212 \log _{5} 5=212$.
(2) $\ln e^{0.1}=0.1 \ln e=0.1$.
(3) $\log \frac{1}{10}+\ln e^{3}=\log 10^{-3}+\ln e^{3}=-3 \log 10+3 \ln e=-3+3=0$.
(9) $e^{\ln 5}=5$ (by the fundamental equation).

