Section 4.4
 Logarithms and Exponential Equations

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Type A - Logarithmic Equations

Strategy:

- Write the equation with single logarithm.
- Eliminate the logarithm and convert it to exponential form.
- Solve the resultant equation.

Example

Solve $\log x-\log 5=\log 7$.
Solution:We write the equation with a single logarithm so we have

$$
\begin{gathered}
\log x-\log 5-\log 7=0 \\
\log \frac{x}{5 \cdot 7}=0 \\
\frac{x}{35}=10^{0}=1 \rightarrow x=35 .
\end{gathered}
$$

Solution Set $=\{35\}$.

Example

(Logarithmic Equation) Solve $\log _{4}(x-2)=1$.
Solution: Since we already have the equation with a single logarithm, we get rid of the logarithm by changing it to the exponential form.

$$
\begin{aligned}
\log _{4}(x-2) & =1 \\
(x-2) & =4^{1} \\
x-2 & =4 \\
x & =6
\end{aligned}
$$

Solution Set $=\{6\}$.

Exercise

Solve $\log _{2}(x-1)=6$.

Example

(Logarithmic Equation) Solve $\log _{2} x+\log _{2}(x-1)=1$.
Solution: First we write it as single logarithm and then we get rid of the logarithm by changing it to the exponential form.

$$
\begin{aligned}
\log _{2} x+\log _{2}(x-1) & =1 \\
\log _{2} x(x-1) & =1 \\
x(x-1) & =2^{1} \\
x^{2}-x & =2 \\
x^{2}-x-2 & =0
\end{aligned}
$$

$x=2$ or $x=-1$ by the formula in Section 0.8
We disregard (reject) $x=-1$ since we cannot have negative number inside the logarithm. so the only solution is $x=2$. Solution Set $=\{2\}$.

Exercise

Solve $\log (x-3)+\log (x-5)=1$.

Example

(Logarithmic Equation) Solve $\log (x+2)-\log x=2$.
Solution: We write it as single logarithm and then we get rid of the logarithm by changing it to the exponential form.

$$
\begin{aligned}
\log (x+2)-\log x & =2 \\
\log \frac{x+2}{x} & =2 \\
\frac{x+2}{x} & =10^{2} \\
\frac{x+2}{x} & =100 \\
x+2 & =100 x \\
2 & =100 x-x \\
2 & =99 x \\
x & =\frac{2}{99}
\end{aligned}
$$

Exercise

Solve $\log (x+5)=\log (3 x+2)+1$.

Exercise

(Old Exam Question) Solve $\log _{2} x+\log _{2}(x+2)=3$.

Exercise

(Old Exam Question) Solve $\log 2+\log (4-x)=2 \log x$.

Exponential Equation

Example

Solve $\left(e^{3 x-2}\right)^{3}=e^{3}$.
Solution:

$$
\begin{array}{r}
\left(e^{3 x-2}\right)^{3}=e^{3} \\
e^{3(3 x-2)}=e^{3} \\
3(3 x-2)=3 \\
9 x-6=3 \\
x=1
\end{array}
$$

Solution Set $=\{1\}$.

Exercise

(Old Exam Question) Solve the following equations:
(1) $e^{\ln x+\ln 20}=2 x+1$. (Hint: Use the fundamental equation)
(2) $3^{2 x-1}=27$.

To solve exponential equations with different bases, we use the following strategy:

- We take the In of both sides (in order to get rid of the exponent).
- We solve the resultant equation.

Example

Solve $(27)^{2 x+1}=\frac{1}{3}$.
Solution: We take In of both sides

$$
\begin{array}{r}
\ln (27)^{2 x+1}=\ln \left(\frac{1}{3}\right) \\
(2 x+1) \ln 27=\ln \left(\frac{1}{3}\right) \\
2 x+1=\frac{\ln \left(\frac{1}{3}\right)}{\ln 27} \\
2 x+1=\frac{-1}{3} \\
x=\frac{-2}{3}
\end{array}
$$

Solution Set $=\left\{\frac{-2}{3}\right\}$.

Exercise

Solve $16^{x+1}=4^{2 x}$

Example

Solve $(10)^{\frac{x}{4}}=6$.

Solution: We take In of both sides

$$
\begin{array}{r}
\ln (10)^{\frac{4}{x}}=6 \\
\left(\frac{4}{x}\right) \ln 10=\ln 6 \\
\frac{4}{x}=\frac{\ln 6}{\ln 10} \\
4 \ln 10=x \ln 6 \\
x=\frac{4 \ln 10}{\ln 6}
\end{array}
$$

Solution Set $=\left\{\frac{4 \ln 10}{\ln 6}\right\}$.

Exercise

Solve $2^{-4+\frac{3}{2} x}=3$

Exercise

(Old Exam Question) Solve $3 e^{2 x-3}-4=2$.

Example

Solve $(7)^{3 x+2}=8$.
Solution: We take In of both sides

$$
\begin{array}{r}
\ln (7)^{3 x+2}=\ln 8 \\
(3 x+2) \ln 7=\ln 8 \\
3 x+2=\frac{\ln 8}{\ln 7} \\
3 x=\frac{\ln 8}{\ln 7}-2 \\
x=\frac{\frac{\ln 8}{\ln 7}-2}{3}
\end{array}
$$

Solution Set $=\left\{\frac{\ln 8-2}{3}\right\}$.

