Section 6.1 Matrices

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

Goal

We want to learn
(1) What a matrix is?
(2) How to add or subtract two matrices?
(3) How to multiple two matrices?
(9) How to find the multiplicative inverse?
(3) What is the determinant of a matrix and why it is useful?
(0) How to solve system of linear equations using matrices?

1- Matrices

Definition

A matrix is just a rectangular array of entries. It is described by the rows and columns.
note: The work matrix is singular. The plural of matrix is matrices (pronounced as'may tri sees').

Example

$$
A=\left(\begin{array}{ll}
2 & 0 \\
3 & 2
\end{array}\right) \quad B=\left(\begin{array}{lll}
5 & 6 & 1 \\
7 & 1 & 2
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
$$

Usually the matrices are written in the form

$$
\left(\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23}
\end{array}\right) \text {, with } B \underbrace{i}_{\text {row }} \underbrace{j}_{\text {column }}
$$

Definition

An $m \times n$-matrix is a rectangular array consists of m rows and n columns.

$$
A=\left(\begin{array}{cccccc}
A_{11} & A_{12} & \cdot & \cdot & \cdot & A_{1 n} \\
A_{21} & A_{22} & \cdot & \cdot & \cdot & A_{2 n} \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
A_{n 1} & A_{n 2} & \cdot & \cdot & \cdot & A_{n n}
\end{array}\right)=\left(A_{i j}\right)_{m \times n}
$$

where $A_{i j}$ is the entry in the row i and column j.

Example

Let

$$
A=\left(\begin{array}{cccc}
3 & -2 & 7 & 3 \\
2 & 1 & -1 & -5 \\
4 & 3 & 2 & 1 \\
0 & 8 & 0 & 2
\end{array}\right)
$$

(1) What is the size of A ?
(2) Find $A_{21}, A_{42}, A_{32}, A_{34}, A_{44}, A_{55}$.
(3) What are the entries of the second row?

Definition

If A is a matrix, the transpose of A is a new matrix A^{T} formed by interchanging the rows and the columns of A, i.e.,

$$
A^{T}=\left(A_{j i}\right)
$$

Example

Find the transpose M^{T} and $\left(M^{T}\right)^{T}$.

$$
A=\left(\begin{array}{cc}
6 & -3 \\
2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
2 & 1 & 3 \\
7 & 1 & 6
\end{array}\right) \quad C=\left(\begin{array}{llll}
3 & 1 & 2 & 5
\end{array}\right)
$$

Solution:
(1)

$$
A^{T}=\left(\begin{array}{cc}
6 & 2 \\
-3 & 4
\end{array}\right) \quad \text { and } \quad\left(A^{T}\right)^{T}=\left(\begin{array}{cc}
6 & -3 \\
2 & 4
\end{array}\right)
$$

Example

Find the transpose M^{T} and $\left(M^{T}\right)^{T}$.

$$
A=\left(\begin{array}{cc}
6 & -3 \\
2 & 4
\end{array}\right) \quad B=\left(\begin{array}{lll}
2 & 1 & 3 \\
7 & 1 & 6
\end{array}\right) \quad C=\left(\begin{array}{llll}
3 & 1 & 2 & 5
\end{array}\right)
$$

Solution:
(1)

$$
B^{T}=\left(\begin{array}{ll}
2 & 7 \\
1 & 1 \\
3 & 6
\end{array}\right) \quad \text { and } \quad\left(B^{T}\right)^{T}=\left(\begin{array}{lll}
5 & 6 & 1 \\
7 & 1 & 2
\end{array}\right)
$$

(2)

$$
C^{T}=\left(\begin{array}{l}
3 \\
1 \\
2 \\
5
\end{array}\right) \quad \text { and } \quad\left(C^{T}\right)^{T}=\left(\begin{array}{llll}
3 & 1 & 2 & 5
\end{array}\right)
$$

Note:
(1) $\left(A^{T}\right)^{T}=A$.
(2) A matrix A is called symmetric if $A^{T}=A$.

Question: When two matrices are equal?

Definition

Two matrices A and B are equal if they have the same size and the same entries at the same position, i.e.,

$$
A_{i j}=B_{i j}
$$

Example

Solve the matrix equation

$$
\left(\begin{array}{ccc}
4 & 2 & 1 \\
x & 2 y & 3 z \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
4 & 2 & 1 \\
-3 & -8 & 0 \\
0 & 1 & 2
\end{array}\right)
$$

Solution:

$$
x=-3,2 y=-8 \rightarrow y=-4,3 z=0 \rightarrow z=0
$$

Special Matrices

- Zero matrix $\mathbf{0}_{m \times n}=(0)_{m \times n}$ "zero everywhere".

$$
\left(\begin{array}{ll}
0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\binom{0}{0}
$$

- Square matrix if $m=n$ (having the same number of rows and columns).

$$
\text { (3) , }\left(\begin{array}{cc}
3 & 2 \\
1 & -5
\end{array}\right),\left(\begin{array}{ccc}
6 & 5 & -1 \\
1 & 3 & 3 \\
8 & -9 & 0
\end{array}\right)
$$

- Diagonal matrix if it is a square matrix $(m=n)$ and all entries off the main diagonal are zeros.

$$
\left(\begin{array}{cc}
3 & 0 \\
0 & -5
\end{array}\right), \quad\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 6
\end{array}\right), \quad\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -11 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Special Matrices

- Upper Diagonal matrix if it has zeros below the main diagonal (entries are 'upper' the main diagonal).

$$
\left(\begin{array}{cc}
3 & 5 \\
0 & -5
\end{array}\right), \quad\left(\begin{array}{ccc}
6 & 3 & 5 \\
0 & 3 & -2 \\
0 & 0 & 6
\end{array}\right),\left(\begin{array}{cccc}
3 & 1 & 2 & -7 \\
0 & -5 & -4 & 6 \\
0 & 0 & -11 & 6 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

- Lower Diagonal matrix if it has zeros above the main diagonal (entries are 'lower' the main diagonal).

$$
\left(\begin{array}{cc}
3 & 0 \\
7 & -5
\end{array}\right), \quad\left(\begin{array}{lll}
6 & 0 & 0 \\
3 & 3 & 0 \\
4 & 7 & 6
\end{array}\right), \quad\left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
6 & -5 & 0 & 0 \\
-8 & -4 & -11 & 0 \\
1 & 4 & 7 & 2
\end{array}\right)
$$

Special Matrices

- Row vector is a matirx with only one row.
(2 3),
($\left.\begin{array}{lll}5 & 13 & 12\end{array}\right)$,
$\left(\begin{array}{lllll}7 & 3 & 0 & -2 & 6\end{array}\right)$,
$\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$
- Column vector is a matrix with only one column.

$$
\binom{3}{6},\left(\begin{array}{c}
3 \\
1 \\
-5
\end{array}\right),\left(\begin{array}{l}
6 \\
1 \\
8 \\
0
\end{array}\right)
$$

- Identity matrix I_{n} if $m=n$ and has one in the main diagonal and zero elsewhere.

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad I_{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

