Section 6.4
 Solving Linear Systems by Row Operations

Dr. Abdulla Eid
College of Science

MATHS 103: Mathematics for Business I

Goal: To solve a system of linear equations by using elementary row operations on matrices.
What are the elementary row operations on a matrix?
(1) Interchanging any two rows $\left(R_{i} \leftrightarrow R_{j}\right)$.
(2) Multiplying (dividing) a row by a non-zero number $\left(R_{i} \rightarrow c R_{i}\right)$.
(3) Add a multiple of a row to another row $\left(R_{i} \rightarrow R_{i}+c R_{j}\right)$.

Example

Consider the following matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 5 & 1 \\
3 & 0 & -2
\end{array}\right)
$$

Perform $R_{3} \rightarrow R_{3}+2 R_{1}$.
Solution:

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 5 & 1 \\
3+2(1) & 0+2(0) & -2+2(2)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & 5 & 1 \\
5 & 0 & 2
\end{array}\right)
$$

Goal of the elementary row operations:
We want to reach a reduced matrix, which is a matrix that satisfy the following properties:
(1) All zero-rows are at the bottom of the matrix.
(2) Each non-zero row has a leading 1's (called pivot) and all entries in the pivot columns are zeros.
(3) The pivots start from left to right (up to down).

Example

Which of the following matrices are reduced matrix?

$$
\left(\begin{array}{lllll}
1 & 3 & 0 & 5 & 1 \\
0 & 0 & 1 & 2 & 6
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Example
Reduce the matrix

$$
\left(\begin{array}{cccc}
0 & -3 & 0 & 2 \\
1 & 5 & 0 & 2
\end{array}\right)
$$

Solution:

$$
\begin{array}{ll}
\left(\begin{array}{cccc}
0 & -3 & 0 & 2 \\
1 & 5 & 0 & 2
\end{array}\right), & R_{1} \leftrightarrow R_{2} \\
\left(\begin{array}{cccc}
1 & 5 & 0 & 2 \\
0 & -3 & 0 & 2
\end{array}\right), & R_{2} \rightarrow \frac{1}{-3} R_{2} \\
\left(\begin{array}{cccc}
1 & 5 & 0 & 2 \\
0 & 1 & 0 & \frac{2}{-3}
\end{array}\right), & R_{1} \rightarrow R_{1}-5 R_{2} \\
\left(\begin{array}{cccc}
1 & -5(0) & 5-5(1) & 0-5(0) \\
\begin{array}{cccc}
2-5\left(\frac{2}{-3}\right) \\
& 0 & 1 & 0
\end{array} \frac{2}{-3}
\end{array}\right) \\
\left(\begin{array}{cccc}
1 & 0 & \frac{16}{3} \\
0 & 1 & 0 & \frac{2}{-3}
\end{array}\right)
\end{array}
$$

Solving System of Linear Equations using elementary row operations

Example
Solve the system

$$
\begin{aligned}
2 x-7 y & =-1 \\
x+3 y & =6
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
2 & -7 & -1 \\
1 & 3 & 6
\end{array}\right), & R_{1} \leftrightarrow R_{2} \\
\left(\begin{array}{cc|c}
1 & 3 & 6 \\
2 & -7 & -1
\end{array}\right), & R_{2} \rightarrow R_{2}-2 R_{1} \\
\left(\begin{array}{ccc}
1 & 3 & 6 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right), \\
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
0 & -13 & -13
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2} \\
& \left(\begin{array}{ll|l}
1 & 3 & 6 \\
0 & 1 & 1
\end{array}\right) R_{1} \rightarrow R_{1}-3 R_{2} \\
& \left(\begin{array}{cc|c}
1-3(0) & 3-3(1) & 6-3(1) \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=3$ and $y=1$ and thus the solution set is $\{(3,1)\}$

Example
Solve the system

$$
\begin{array}{r}
x+4 y=9 \\
3 x-y=6 \\
2 x-2 y=4
\end{array}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3 & -1 & 6 \\
2 & -2 & 4
\end{array}\right), \quad R_{2} \rightarrow R_{2}-3 R_{1} \quad R_{3} \rightarrow R_{3}-2 R_{1} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3-3(1) & -1-3(4) & 6-3(9) \\
2-2(1) & -2-2(4) & 4-2(9)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & -13 & -21 \\
0 & -10 & -14
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10 & -14
\end{array}\right), \quad R_{3} \rightarrow R_{3}+10 R_{2} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10+10(1) & -14+10\left(\frac{-21}{-13}\right)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & 0 & \frac{28}{13}
\end{array}\right)
\end{aligned}
$$

We have $0=\frac{28}{13}$ which is a false statement and thus there will be no solution.

Example
Solve the system

$$
\begin{aligned}
x+y-z & =7 \\
4 x+6 y-4 z & =8 \\
x-y-5 z & =23
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
4 & 6 & -4 & 8 \\
1 & -1 & -5 & 23
\end{array}\right), \quad R_{2} \rightarrow R_{2}-4 R_{1} \quad R_{3} \rightarrow R_{3}-R_{1} \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
4-4(1) & 6-4(1) & -4-4(-1) & 8-4(7) \\
1-1 & -1-1 & -5-(-1) & 23-7
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 2 & 0 & -20 \\
0 & -2 & -4 & 16
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{2} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & -2 & -4 & 16
\end{array}\right), \quad R_{3} \rightarrow R_{3}+2 R_{2} \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & 0 \\
0 & -2+2(1) & -4+2(0) & 16+2(-10)
\end{array}\right) \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & -4 & -4
\end{array}\right) R_{3} \rightarrow \frac{1}{-4} R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}+R_{3} \\
& \left(\begin{array}{ccc:c}
1+1(0) & 1+1(0) & -1+1(1) & 7+1(1) \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & 0 & 8 \\
0 & 1 & 0 & -10
\end{array}\right) \quad R_{n} \rightarrow R_{1}-R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{lll:c}
1 & 1 & 0 & 8 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}-R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 0 & 0 & 18 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=18, y=-10$, and $z=1$. Solution Set $=\{(18,-10,1)\}$.

Example
Solve the system

$$
\begin{aligned}
x+3 y & =2 \\
2 x+7 y & =4 \\
3 x+15 y+3 z & =15
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 3 & 0 & 2 \\
2 & 7 & 0 & 4 \\
3 & 15 & 3 & 15
\end{array}\right), \quad R_{2} \rightarrow R_{2}-2 R_{1} \quad R_{3} \rightarrow R_{3}-3 R_{1} \\
& \left(\begin{array}{ccc|c}
1 & 3 & 0 & 2 \\
2-2(1) & 7-2(3) & 0-2(0) & 4-2(2) \\
3-3(1) & 15-3(3) & 3-3(0) & 15-3(2)
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 6 & 3 & 9
\end{array}\right) \quad R_{3} \rightarrow R_{3}-6 R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0-6(0) & 6-6(1) & 3-6(0) & 9-6(0)
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 9
\end{array}\right) \quad R_{3} \rightarrow \frac{1}{3} R_{3} \\
& \left(\begin{array}{lll|l}
1 & 3 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right) R_{1} \rightarrow R_{1}-3 R_{2} \\
& \left(\begin{array}{ccc:c}
1-3(0) & 3-3(1) & 0-3(0) & 2-3(0) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Example

(Old Exam Question) The supply and demand equations of a certain product are

$$
\begin{aligned}
& \text { Demand: } 2 q+p=50 \\
& \text { Supply : } 3 q-5 p=10
\end{aligned}
$$

Use elementary row operations to find the market equilibrium point.
Solution: First we write the augmented matrix of the system which is

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
2 & 1 & 50 \\
3 & -5 & 10
\end{array}\right), & R_{1} \rightarrow \frac{1}{2} R_{1} \\
\left(\begin{array}{cc|c}
1 & \frac{1}{2} & 25 \\
3 & -5 & 10
\end{array}\right), & R_{2} \rightarrow R_{2}-3 R_{1} \\
\left(\begin{array}{ccc}
\frac{1}{2} & & 25 \\
3-3(1) & -5-3\left(\frac{1}{2}\right) & 10-3(25)
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc:c}
1 & \frac{1}{2} & 25 \\
0 & -\frac{13}{2} & -65
\end{array}\right), \quad R_{2} \rightarrow \frac{1}{\frac{-13}{2}} R_{2} \\
& \left(\begin{array}{cc|c}
1 & \frac{1}{2} & 25 \\
0 & 1 & 10
\end{array}\right) \quad R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2} \\
& \left(\begin{array}{ccc}
1-\frac{1}{2}(0) & \frac{1}{2}-\frac{1}{2}(1) & 25-\frac{1}{2}(10) \\
& 0 & 1
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 0 & 20 \\
0 & 1 & 10
\end{array}\right)
\end{aligned}
$$

So $q=20, p=10$.

