Section 6.6 Inverse of a matrix

Dr. Abdulla Eid

College of Science

MATHS 103: Mathematics for Business I

Goal:
(1) To define the inverse of a matrix.
(2) To find the inverse of a matrix.
(3) To solve linear system using the inverse of a matrix.

1 - Definition of the inverse of a matrix

 Recall:- If a is a real number, then the additive inverse of a is $-a$, such that

$$
a+(-a)=0 \text { and }(-a)+a=0
$$

- If a is a nonzero real number, then the multiplicative inverse of a is $\frac{1}{a}$, such that

$$
a \cdot \frac{1}{a}=1 \text { and } \frac{1}{a} \cdot a=1
$$

- If f is a function passing the horizontal line test, then the inverse of f is f^{-1} such that

$$
\left(f \circ f^{-1}\right)(x)=x \text { and }\left(f^{-1} \circ f\right)(x)=x
$$

Definition

Let A be an $n \times n$-matrix. The inverse matrix (if it exists) of A is another matrix A^{-1} such that

$$
A \cdot A^{-1}=I_{n} \text { and } A^{-1} \cdot A=I_{n}
$$

2 - How to find the inverse of a matrix

We write

$$
\begin{equation*}
\left(A \mid I_{n}\right) \tag{1}
\end{equation*}
$$

and then we reduce (1) to get,

$$
\left(I_{n} \mid A^{-1}\right)
$$

Note: If we can't reduce (1), then the matrix has no inverse.

Example
Find A^{-1} for

$$
A=\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right)
$$

Solution:

$$
\begin{array}{lc}
\left(\begin{array}{cc:cc}
3 & 1 & 1 & 0 \\
4 & 1 & 0 & 1
\end{array}\right), & R_{1} \rightarrow \frac{1}{3} R_{1} \\
\left(\begin{array}{cc:cc}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
4 & 1 & 0 & 1
\end{array}\right), & R_{2} \rightarrow R_{2}-4 R_{1} \\
\left(\begin{array}{cccc}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
4-4(1) & 1-4\left(\frac{1}{3}\right) & 0-4\left(\frac{1}{3}\right) & 1-4(0)
\end{array}\right), \\
\left(\begin{array}{cc|cc}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{-1}{3} & \frac{-4}{3} & 1
\end{array}\right), & R_{2} \rightarrow \frac{1}{\frac{-1}{3}} R_{2} \\
\left(\begin{array}{cc|cc}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 1 & 4 & -3
\end{array}\right), & R_{1} \rightarrow R_{1}-\frac{1}{3} R_{2}
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc:cc}
1 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 1 & 4 & -3
\end{array}\right),
\end{aligned} \quad R_{1} \rightarrow R_{1}-\frac{1}{3} R_{2},
$$

Thus,

$$
A^{-1}=\left(\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right)
$$

To check our answer, we must show that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$. We have that $A A^{-1}=$

$$
\begin{aligned}
&\left(\begin{array}{ll}
-1 & 1 \\
4 & -3
\end{array}\right) \\
&\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right)\left(\begin{array}{ll}
3(-1)+1(4) & 3(1)+1(-1) \\
4(-1)+1(4) & 4(1)+1(-3)
\end{array}\right) \\
&=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

To check our answer, we must show that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$. We have that $A^{-1} A=$

$$
\begin{aligned}
& \left(\begin{array}{l}
3 \\
4
\end{array}\right. \\
\left(\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right) & \left(\begin{array}{ll}
-1(3)+1(4) & -1(1)+1(1) \\
4(3)+-3(4) & 4(1)+-3(1)
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
\end{aligned}
$$

Example
Find A^{-1} for

$$
A=\left(\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ll|ll}
1 & 1 & 1 & 0 \\
3 & 3 & 0 & 1
\end{array}\right), \quad R_{2} \rightarrow R_{2}-3 R_{1} \\
& \left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
3-3(1) & 3-3(1) & 0-3(1) & 1-3(0)
\end{array}\right) \text {, } \\
& \left(\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & 0 & -3 & 1
\end{array}\right) \text {, }
\end{aligned}
$$

Since we couldn't reduce the matrix above, then it has no inverse!

Exercise

Find the inverse of

$$
A=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right), \quad a \in(-\infty, \infty)
$$

Example

Find A^{-1} for

$$
A=\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & -1 & 5 \\
1 & -1 & 2
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccc:ccc}
2 & 1 & 0 & 1 & 0 & 0 \\
4 & -1 & 5 & 0 & 1 & 0 \\
1 & -1 & 2 & 0 & 0 & 1
\end{array}\right), R_{1} \leftrightarrow R_{3} \\
& \left(\begin{array}{ccc:ccc}
1 & -1 & 2 & 0 & 0 & 1 \\
4 & -1 & 5 & 0 & 1 & 0 \\
2 & 1 & 0 & 1 & 0 & 0
\end{array}\right), \quad R_{2} \rightarrow R_{2}-4 R_{1}, R_{3} \rightarrow R_{3}-2 R_{1} \\
& \left.\begin{array}{cccccc}
1 & -1 & 2 & 0 & 0 & 1 \\
4-4(1) & -1-4(-1) & 5-4(2) & 0-4(0) & 1-4(0) & 0-4(1) \\
2-2(1) & 1-2(-1) & 0-2(2) & 1-2(0) & 0-2(0) & 0-2(1)
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & -1 & 2 & 0 & 0 & 1 \\
0 & 3 & -3 & 0 & 1 & -4 \\
0 & 3 & -4 & 1 & 0 & -2
\end{array}\right), \quad R_{2} \rightarrow \frac{1}{3} R_{2} \\
& \left(\begin{array}{ccc|ccc}
1 & -1 & 2 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & \frac{1}{3} & \frac{-4}{3} \\
0 & 3 & -4 & 1 & 0 & -2
\end{array}\right), \quad R_{3} \rightarrow R_{3}-3 R_{2}, R_{1} \rightarrow R_{1}+R_{2} \\
& \left(\begin{array}{ccc|ccc}
1+0 & -1+1 & 2+-1 & 0+0 & 0+\frac{1}{3} & 1+\frac{-4}{3} \\
0 & 1 & -1 & 0 & \frac{1}{3} & \frac{-4}{3} \\
0 & 3-3(1) & -4-3(-1) & 1-3(0) & 0-3\left(\frac{1}{3}\right) & -2-3\left(\frac{-4}{3}\right)
\end{array}\right) \text {, } \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & \frac{1}{3} & \frac{-1}{3} \\
0 & 1 & -1 & 0 & \frac{1}{3} & \frac{-4}{3} \\
0 & 0 & -1 & 1 & -1 & 2
\end{array}\right), \quad R_{3} \rightarrow-R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & \frac{1}{3} & \frac{-1}{3} \\
0 & 1 & -1 & 0 & \frac{1}{3} & \frac{-4}{3} \\
0 & 0 & 1 & -1 & 1 & -2
\end{array}\right), \quad R_{2} \rightarrow R_{2}+R_{3}, R_{1} \rightarrow R_{1}-R_{3} \\
& \left(\begin{array}{cccccc}
1-0 & 0-0 & 1-1 & 0-(-1) & \frac{1}{3}-1 & \frac{-1}{3}-(-2) \\
0+0 & 1+0 & -1+1 & 0+(-1) & \frac{1}{3}+1 & \frac{-4}{3}+(-2) \\
0 & 0 & 1 & -1 & 1 & -2
\end{array}\right), \\
& \left(\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 & \frac{-2}{3} & \frac{5}{3} \\
0 & 1 & 0 & -1 & \frac{4}{3} & \frac{-10}{3} \\
0 & 0 & 1 & -1 & 1 & -2
\end{array}\right),
\end{aligned}
$$

Thus,

$$
A^{-1}=\left(\begin{array}{ccc}
1 & \frac{-2}{3} & \frac{5}{3} \\
-1 & \frac{4}{3} & \frac{-10}{3} \\
-1 & 1 & -2
\end{array}\right)
$$

To check our answer, we must show that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$. We have that $A A^{-1}=$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & \frac{-2}{3} & \frac{5}{3} \\
-1 & \frac{4}{3} & \frac{-10}{3} \\
-1 & 1 & -2
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & -1 & 5 \\
1 & -1 & 2
\end{array}\right) & \left(\begin{array}{ccc}
2(1)+1(-1)+0(-1) & 2\left(\frac{-2}{3}\right)+1\left(\frac{3}{4}\right)+0(1) & 2 \\
4(1)+(-1)(-1)+5(-1) & 4\left(\frac{-2}{3}\right)+(-1)\left(\frac{4}{3}\right)+5(1) & 4\left(\frac{5}{3}\right. \\
1(1)+(-1)(-1)+2(-1) & 1\left(\frac{-2}{3}\right)+(-1)\left(\frac{4}{3}\right)+2(1) & 1\left(\frac{5}{3}\right)
\end{array}\right. \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3}
\end{aligned}
$$

To check our answer, we must show that $A A^{-1}=I_{n}$ and $A^{-1} A=I_{n}$. We have that $A^{-1} A=$

$$
\begin{aligned}
&\left(\begin{array}{ccc}
1 & \frac{-2}{3} & \frac{5}{3} \\
-1 & \frac{4}{3} & \frac{-10}{3} \\
-1 & 1 & -2
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 0 \\
4 & -1 & 5 \\
1 & -1 & 2
\end{array}\right) \\
&\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3}
\end{aligned}
$$

3 - Solving Linear System using the inverse of a matrix

Example

Solve

$$
\begin{aligned}
& 3 x+y=2 \\
& 4 x+y=3
\end{aligned}
$$

Solution: This system can be written in a matrix multiplication form as

$$
\begin{aligned}
\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} & =\binom{2}{3} \\
A\binom{x}{y} & =\binom{2}{3} \\
A^{-1} A\binom{x}{y} & =A^{-1}\binom{2}{3} \\
I_{2}\binom{x}{y} & =A^{-1}\binom{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{x}{y}=A^{-1}\binom{2}{3}=\left(\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right)\binom{2}{3} \\
& \binom{x}{y}=\binom{1}{-1}
\end{aligned}
$$

Exercise

(Old Final Exam Question) Solve the following system using the inverse matrix method.

$$
\begin{array}{r}
2 x-3 y=9 \\
4 x+y=1
\end{array}
$$

Exercise

(Old Final Exam Question) The supply and demand equations of a certain product are

$$
\begin{aligned}
& \text { Demand : } 2 q+p=50 \\
& \text { Supply : } 3 q-5 p=10
\end{aligned}
$$

Use the matrix inverse method to find the market equilibrium point.

