University of Bahrain
Department of Mathematics
MATHS101: Calculus I
Spring 2016

Test 1

Student's Name: \qquad ID: \qquad

Section: \qquad Serial Number: \qquad

- Do not open the exam until you are instructed to do so.
- Show sufficient work to justify each answer.
- Calculators are allowed but cell phones are not allowed during the exam.
- Exchange of any material such as calculator, pen, eraser is not allowed.
- No questions are allowed.
- You have 1 hour to finish this exam. You can leave only after 30 minutes of the exam.
- There are 3 questions and 5 pages in this exam.

Question	Points	Score
1	20	
2	18	
3	12	
Total:	50	

Exam Version: A

Question 1 (20 points)
Choose the correct answer for each of the following:
(1) If $\lim _{x \rightarrow-2} \frac{2+x}{x^{2}+5 x+6}$
A. 5
B. $\frac{1}{5}$
C. 1
D. -5
E. -1
F. $-\frac{1}{5}$
(2) If $y=\sqrt{\sec x+e^{-x}}$, then $y^{\prime}=$
A. $\frac{\sec x \tan x-e^{-x}}{\sqrt{\sec x+e^{-x}}}$
B. $\frac{\sec x \tan x-e^{-x}}{2 \sqrt{\sec x+e^{-x}}}$
C. $\sec x \tan x-e^{-x}$
D. $\frac{1}{2 \sqrt{\sec x+e^{-x}}}$
E. $\frac{\tan ^{2} x-e^{-x}}{2 \sqrt{\sec x+e^{-x}}}$
F. $\frac{\sec x \tan x+e^{-x}}{2 \sqrt{\sec x+e^{-x}}}$
(3) At what points is the function $f(x)=\sqrt{3 x-9}$ continuous?
A. $(3, \infty)$
B. $(\infty, 3)$
C. $[9, \infty)$
D. $[-3, \infty)$
E. $(-\infty, 3]$
F. $[3, \infty)$
(4) $\lim _{x \rightarrow 0} \frac{|x-2|}{x-2}=$
A. -1
B. 1
C. 2
D. -2
E. 0
F. ∞
(5) If $f(x)=\frac{4}{x+5}$, then the value of $f^{\prime}(0)$ is
A. $\frac{-4}{5}$
B. $\frac{4}{25}$
C. $\frac{4}{5}$
D. $\frac{-4}{25}$
E. 0
F. $\frac{-1}{25}$
(6) $\lim _{x \rightarrow 1^{+}} \frac{2 x-3}{x^{2}-1}=$
A. -3
B. $-\infty$
C. 2
D. -1
E. 0
F. ∞
(7) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}}{x}=$
A. -1
B. ∞
C. $-\infty$
D. 0
E. 1
F. 2
(8) If $y=\sqrt[7]{x^{3}}$, then $y^{\prime}=$
A. $\frac{3}{7} x^{\frac{3}{7}}$
B. $x^{\frac{-4}{7}}$
C. $\frac{3}{7} x^{\frac{-4}{7}}$
D. $\frac{7}{3} x^{\frac{4}{3}}$
E. $\frac{3}{7} x^{\frac{-3}{7}}$
F. $\frac{4}{7} x^{\frac{-4}{7}}$
(9) If $3-x^{2} \leqslant f(x) \leqslant 3+x^{2}$ for all x, then $\lim _{x \rightarrow 0} f(x)=$
A. 4
B. 5
C. 3
D. 2
E. -3
F. None of the above
(10) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{3 x-5}=$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{3}{2}$
E. $\frac{-3}{2}$
F. 2

Question 2 (18 points)
(a) Find the derivative y^{\prime} of the following function: (Do not simplify)

$$
y=\left[x \sin (2 x)+\tan ^{4}\left(x^{7}\right)\right]^{5}
$$

(b) Let $f(x)=\frac{x^{2}-4}{x^{2}+4}$. Find $f^{\prime}(-2)$.
(c) Find the value(s) of a so that

$$
f(x)= \begin{cases}x^{2}, & x \leqslant 2 \\ a^{2}-3 x^{2}, & 2<x\end{cases}
$$

is continuous at every x.

Question 3 ($8+4$ points)
(a) Use the definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\sqrt{x+5}$.
(b) Given that $f^{\prime}(x)=\frac{x}{x^{2}+1}$ and $g(x)=\sqrt{3 x-1}$. Find $(f \circ g)^{\prime}(x)$ (Simplify your answer).

