University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid

Homework 2: Elementary Properties of Groups and order of an element Due on October 19 Hand on all the problems

Name: _____

1. In a group (G, *), prove that the equations a * x = b and y * c = d have unique solutions.

2. Let (G, *) be a group such that $g^2 = e$, for all $g \in G$. Prove that (G, *) is an abelian group.

(Hint: Consider $(ab)^2$)

3. In class, we define a group to be a nonempty set with an associative binary operation * such that

Identity There exists an element *e* such that for all *a* we have

$$a * e = a$$

Inverse For all *a*, there exists *a*['] such that

$$a * a' = e$$

Prove that in addition we get e * a = a and a' * a = e. (Hence left-sided identity and inverse imply two-sided identity and inverse)

4. Let *G* be a group and $a \in G$ is an element of order *n*. Prove that if $n \mid k$, then $a^k = e$.

5. Translate each of the following expressions in additive notation:

1.
$$(ab^2c^3)^{-3}$$

2.
$$(ab)^{-2}c^2 = e$$

6. In a group *G*, If $a^{24} = e$, what are the possibilities for o(a)?

7. What is o(6) in $(\mathbb{Z}_{14}, +_{14})$.

8. List all elements of order 10 in $(\mathbb{Z}_{10}, +_{10})$

9. In a group *G*, let o(a) = 2000, find $o(a^{185})$, $o(a^{400})$, $o(a^7)$, and $o(a^{62})$

10. Let

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

in $GL(2, \mathbb{R})$. Show that o(A) and o(B) are both finite, while o(AB) is infinite.

MATHS 311 Homework 1: Examples of Groups, Page 6 of 6September 27, 2017

11. 1. Prove that in a group, an element and it inverse have the same order.

2. For any $a, g \in G$, What is $(gag^{-1})^n$?

3. Prove that $o(gag^{-1}) = o(a)$.