University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework 2: Elementary Properties of Groups and order of an element
 Due on October 19 Hand on all the problems

Name: \qquad

1. In a group $(G, *)$, prove that the equations $a * x=b$ and $y * c=d$ have unique solutions.
2. Let $(G, *)$ be a group such that $g^{2}=e$, for all $g \in G$. Prove that $(G, *)$ is an abelian group.
(Hint: Consider $(a b)^{2}$)
3. In class, we define a group to be a nonempty set with an associative binary operation $*$ such that

Identity There exists an element e such that for all a we have

$$
a * e=a
$$

Inverse For all a, there exists a^{\prime} such that

$$
a * a^{\prime}=e
$$

Prove that in addition we get $e * a=a$ and $a^{\prime} * a=e$. (Hence left-sided identity and inverse imply two-sided identity and inverse)
4. Let G be a group and $a \in G$ is an element of order n. Prove that if $n \mid k$, then $a^{k}=e$.
5. Translate each of the following expressions in additive notation:

1. $\left(a b^{2} c^{3}\right)^{-3}$
2. $(a b)^{-2} c^{2}=e$
3. In a group G, If $a^{24}=e$, what are the possibilities for $o(a)$?
4. What is $o(6)$ in $\left(\mathbb{Z}_{14},+_{14}\right)$.
5. List all elements of order 10 in $\left(\mathbb{Z}_{10},+{ }_{10}\right)$
6. In a group G, let $o(a)=2000$, find $o\left(a^{185}\right), o\left(a^{400}\right), o\left(a^{7}\right)$, and $o\left(a^{62}\right)$
7. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)
$$

in $G L(2, \mathbb{R})$. Show that $o(A)$ and $o(B)$ are both finite, while $o(A B)$ is infinite.
11. 1. Prove that in a group, an element and it inverse have the same order.
2. For any $a, g \in G$, What is $\left(g a g^{-1}\right)^{n}$?
3. Prove that $o\left(\mathrm{gag}^{-1}\right)=o(a)$.

