University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework 3: Subgroups
 Due on October 26
 Hand on all the problems

Name: \qquad

1. Show directly using Cayley's table that

$$
\{0,3,6,9\} \leq\left(\mathbb{Z}_{12},+_{12}\right)
$$

2. Prove that

$$
H=\left\{2^{m} \mid m \in \mathbb{Z}\right\} \leq\left(\mathbb{Q}^{\times}, \cdot\right)
$$

3. Prove that

$$
\mathrm{SL}(2, \mathbb{R}):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1, a, b, c, d \in \mathbb{R}\right\}
$$

is a subgroup of $\operatorname{GL}(2, \mathbb{R})$ under matrix multiplication. (The group $\operatorname{SL}(2, \mathbb{R})$ is called the real special linear group)
4. Let G be a group, show that

$$
H:=\left\{g^{2} \mid g \in G\right\}
$$

is a subgroup.
5. Let $H, K \leq G$. Prove that

$$
H K \leq G \Longleftrightarrow H K=K H
$$

In case G is abelian, can you conclude that $H K \leq G$?
6. Give an explicit example where the torsion subset is not a subgroup when G is non-abelian.
(Hint: Exercise 10 in Homework 2)
7. (i) Let $H=2 \mathbb{Z}$ and $K=3 \mathbb{Z}$ be two subgroups of \mathbb{Z}. Show that $H \cup K$ is not a subgroup of \mathbb{Z}.
(Hint: Find one element in H and one element in K such that their sum is not in $H \cup K$)
(ii) Let $H, K \leq G$. Prove that

$$
H \cup K \leq G \Longleftrightarrow H \subseteq K \text { or } K \subseteq H
$$

8. Let G be a group. Prove that

$$
Z(G) \leq G
$$

