October 9, 2017

University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid

Homework 4: Cyclic Groups Due on November 2 Hand on all problems 1–5

Name: _____

1. Let $G = GL(2, \mathbb{R})$ under matrix multiplication. Find the following:

1. $C\left(\begin{pmatrix}1&1\\1&0\end{pmatrix}\right)$

2.
$$C\left(\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\right)$$

3. Z(G)

- 2. Let *G* be a group.
 - 1. If *G* is abelian, what are Z(G) and C(a)? for any $a \in G$.

2. Show that $C(a) = C(a^{-1})$ for all $a \in G$.

3. Show that $Z(G) \leq C(a)$ for all $a \in G$.

4. Show that $Z(G) = \bigcap_{a \in G} C(a)$.

3. Find (6,8), (5,3), and (6,11) inside $(\mathbb{Z},+)$. Can you conclude what is (a,b) if gcd(a,b) = 1?

4. Find all subgroups of $(\mathbb{Z}_{45}, +_{45})$.

5. If $a, b \in G$ commute, show that

 $o(ab) \mid \operatorname{lcm}(o(a), o(b))$

(Hint: Let $\ell = \operatorname{lcm}(o(a), o(b))$ and prove that $(ab)^{\ell} = e$)

6. 1. Show $n\mathbb{Z} \subseteq m\mathbb{Z}$ if and only if $n \mid m$.

2. Show $n\mathbb{Z} \cap m\mathbb{Z} = \{0\}$ if and only if gcd(n, m) = 1.

7. Prove that (Q, +) is not finitely generated group.