University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework 4: Cyclic Groups

Due on November 2
Hand on all problems 1-5

Name: \qquad

1. Let $G=G L(2, \mathbb{R})$ under matrix multiplication. Find the following:
2. $C\left(\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right)$
3. $C\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$
4. $Z(G)$
5. Let G be a group.
6. If G is abelian, what are $Z(G)$ and $C(a)$? for any $a \in G$.
7. Show that $C(a)=C\left(a^{-1}\right)$ for all $a \in G$.
8. Show that $Z(G) \leq C(a)$ for all $a \in G$.
9. Show that $Z(G)=\cap_{a \in G} C(a)$.
10. Find $\langle 6,8\rangle,\langle 5,3\rangle$, and $\langle 6,11\rangle$ inside $(\mathbb{Z},+)$. Can you conclude what is $\langle a, b\rangle$ if $\operatorname{gcd}(a, b)=1$?
11. Find all subgroups of $\left(\mathbb{Z}_{45},{ }_{45}\right)$.
12. If $a, b \in G$ commute, show that

$$
o(a b) \mid \operatorname{lcm}(o(a), o(b))
$$

(Hint: Let $\ell=\operatorname{lcm}(o(a), o(b))$ and prove that $(a b)^{\ell}=e$)
6. 1. Show $n \mathbb{Z} \subseteq m \mathbb{Z}$ if and only if $n \mid m$.
2. Show $n \mathbb{Z} \cap m \mathbb{Z}=\{0\}$ if and only if $\operatorname{gcd}(n, m)=1$.
7. Prove that $(\mathbb{Q},+)$ is not finitely generated group.

