University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework 5: Permutation Groups
 Due on November 16
 Hand on problems 1-6

Name: \qquad

1. Let $\alpha:=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right), \beta:=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$. Show that $S_{3}=\langle\alpha, \beta\rangle$.
2. For each of the following permutation, write it as disjoint product of cycles, find its order, determine whether it is odd or even permutation.
3. $(123)(45)$ in S_{5}
4. $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2\end{array}\right)$
5. $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 4 & 6\end{array}\right)$
6. $(13256)(23)(46512)$ in S_{6}.
7. $(345)(245)$ in S_{6}.
8. (13) (58) (2367)[(13)(58) $]^{-1}$ in S_{8}.
9. Let $\alpha, \beta \in S_{n}$. Show that $\alpha^{-1} \beta^{-1} \alpha \beta$ is an even permutation.
10. Can you find an element in A_{12} of order 30?
11. Let $i \in\{1,2, \ldots, n\}$. Define

$$
\operatorname{stab}(i):=\left\{\pi \in S_{n} \mid \pi(i)=i\right\}
$$

Show that $\operatorname{stab}(i)$ is a subgroup of S_{n}. It is called the stabilizer of i in S_{n} since it consists of those permutations that leaves i fixed. Can you find the oder of the stabilizer subgroup?
6. Let $D_{4}:=\left\{r_{0}, r_{90^{\circ}}, r_{180^{\circ}}, r_{270^{\circ}}, d_{H}, d_{V}, d_{x}, d_{-x}\right\}$. Write up the Cayley's table for D_{4} and show it is not abelian.
7. (Important) Let $\tau=\left(a_{1} a_{2} \ldots a_{k}\right)$ be a cycle of length k.
(a) Prove that if σ is any permutation, then

$$
\sigma \tau \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{k}\right)\right)
$$

is a cycle of length k.
(b) Let μ be a cycle of length k . Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1}=\mu$.

