University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid

Homework 5: Permutation Groups Due on November 16 Hand on problems 1–6

Name: _____

1. Let
$$\alpha := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
, $\beta := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. Show that $S_3 = \langle \alpha, \beta \rangle$.

2. For each of the following permutation, write it as disjoint product of cycles, find its order, determine whether it is odd or even permutation.

1. (123)(45) in S_5

2.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 6 & 2 \end{pmatrix}$$

$$3. \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 5 & 4 & 6 \end{pmatrix}$$

4. (13256)(23)(46512) in S_6 .

5. (345)(245) in S_6 .

6. $(13)(58)(2367)[(13)(58)]^{-1}$ in S_8 .

3. Let $\alpha, \beta \in S_n$. Show that $\alpha^{-1}\beta^{-1}\alpha\beta$ is an even permutation.

4. Can you find an element in A_{12} of order 30?

5. Let $i \in \{1, 2, ..., n\}$. Define

$$\operatorname{stab}(i) := \{ \pi \in S_n \mid \pi(i) = i \}$$

Show that stab(i) is a subgroup of S_n . It is called the *stabilizer of i in* S_n since it consists of those permutations that leaves *i* fixed. Can you find the oder of the stabilizer subgroup?

6. Let $D_4 := \{r_0, r_{90^\circ}, r_{180^\circ}, r_{270^\circ}, d_H, d_V, d_x, d_{-x}\}$. Write up the Cayley's table for D_4 and show it is not abelian.

7. (Important) Let τ = (a₁a₂...a_k) be a cycle of length *k*.
(a) Prove that if σ is any permutation, then

$$\sigma\tau\sigma^{-1} = (\sigma(a_1)\,\sigma(a_2)\ldots\sigma(a_k))$$

is a cycle of length *k*.

(b) Let μ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1} = \mu$.