University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework6: Cosets and Lagrange's Theorem
 Due on November 16
 Hand all the problems

Name: \qquad

1. Find all the right and left cosets of the following subgroups and find the index $[G: H]$.
2. $H:=\{1,17\}$ in $U(32)$.
3. $H:=\langle 3\rangle$ in $U(32)$.
4. $H:=\langle(1234)\rangle$ in S_{4}.
5. $H:=\left\{r_{0}, r_{90^{\circ}}, r_{180^{\circ}}, r_{270^{\circ}}\right\}$ in D_{4}.
6. $H=\langle 12,20\rangle$ in \mathbb{Z}_{40}.
7. Let H be a subgroup of a group G. Prove that

$$
a \in H \Longleftrightarrow a H=a
$$

3. Let H and K be two subgroups of a group G with $H \leq K \leq G$. Prove that

$$
[G: H]=[G: K][K: H]
$$

4. What fails in the proof that the number of left cosets and the number of right cosets is the same if we change the function to be $f(g H)=H g$?
5. Prove that the order of $U(n)$ is even.
(Hint: What is the order of $n-1$ in $U(n)$?)
6. Suppose that G is a group with more than one element and G has no proper, nontrivial subgroups. Prove that the order of G is finite.
(Do not assume that G is finite, rather prove that first!)
7. In this exercise, you will show that the converse of Lagrange's theorem is false.
8. Write the converse of Lagrange's theorem.
9. What is $\left|A_{4}\right|$?. Show that A_{4} contains exactly eight 3-cycles by listing them all.
10. Prove that is $\sigma \in A_{n}$, then $\pi \sigma \pi^{-1} \in A_{n}$.
11. We will show that A_{4} has no subgroup of order 6 . Assume on the contrary that H is a subgroup of order 6 . Prove that H must contain a 3 -cycle.
12. Let $\sigma \in H$ be a 3-cycle. Use Part (3) above and Exercise 7 in Homework 5 to show that H must contain all the 3 -cycles and find the contradiction.
