University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid



## Homework6: Cosets and Lagrange's Theorem Due on November 16 Hand all the problems

Name: \_\_\_\_\_

1. Find all the right and left cosets of the following subgroups and find the index [G:H].

1.  $H := \{1, 17\}$  in U(32).

2.  $H := \langle 3 \rangle$  in *U*(32).

3.  $H := \langle (1234) \rangle$  in  $S_4$ .

4.  $H := \{r_0, r_{90^\circ}, r_{180^\circ}, r_{270^\circ}\}$  in  $D_4$ .

5.  $H = \langle 12, 20 \rangle$  in  $\mathbb{Z}_{40}$ .

2. Let *H* be a subgroup of a group *G*. Prove that

$$a \in H \iff aH = a$$

3. Let *H* and *K* be two subgroups of a group *G* with  $H \le K \le G$ . Prove that

[G:H] = [G:K][K:H]

4. What fails in the proof that the number of left cosets and the number of right cosets is the same if we change the function to be f(gH) = Hg?

5. Prove that the order of U(n) is even. (Hint: What is the order of n - 1 in U(n)?)

6. Suppose that *G* is a group with more than one element and *G* has no proper, non-trivial subgroups. Prove that the order of *G* is finite.(Do **not** assume that *G* is finite, rather prove that first!)

- 7. In this exercise, you will show that the converse of Lagrange's theorem is false.
  - 1. Write the converse of Lagrange's theorem.

2. What is  $|A_4|$ ?. Show that  $A_4$  contains exactly eight 3-cycles by listing them all.

3. Prove that is  $\sigma \in A_n$ , then  $\pi \sigma \pi^{-1} \in A_n$ .

4. We will show that  $A_4$  has **no** subgroup of order 6. Assume on the contrary that *H* is a subgroup of order 6. Prove that *H* must contain a 3-cycle.

5. Let  $\sigma \in H$  be a 3-cycle. Use Part (3) above and Exercise 7 in Homework 5 to show that *H* must contain all the 3-cycles and find the contradiction.