University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid

Homework 8: Quotient groups Due on December 7 Hand all the problems

Name: _____

1. For the groups in Question 1 in Homework 6, find the quotient group G/H if applicable.

MATHS 311 Homework 8: Quotient Groups, Page 2 of 8 November 26, 2017

2. Show that If *G* is a cyclic group, then G/H is a cyclic group.

3. Find the order of $9 + \langle 4 \rangle$ in \mathbb{Z}_{12} .

MATHS 311 Homework 8: Quotient Groups, Page 3 of 8 November 26, 2017

- 4. Let *G* be a group and let *H* be the torsion subgroup of *G*.
 - (a) Show that *H* is a normal subgroup.

(b) Show that every nonidentity element of G/H is of infinite order.

5. If $x^2 \in H$ for all $x \in G$, prove that H is a normal subgroup of G and that G/H is abelian group.

6. (Important) Let *G* be a group and *H* is a subgroup of *G*. Define the **normalizer** of *H* in *G*, denoted by $N_G(H)$ by

 $N_G(H) := \{a \in G \mid aH = Ha\}$

(a) Prove that $N_G(H)$ is a subgroup of *G*.

(b) Let $G = S_4$ and H = stab(2). What is $N_G(H)$?

(c) Show that *H* is normal in $N_G(H)$.

MATHS 311

(d) Show that if *H* is normal in a subgroup *K*, then $K \subseteq N_G(H)$. (i.e., $N_G(H)$ is the largest subgroup where *H* is a normal subgroup of).

(e) If *H* is normal subgroup of *G*, what is $N_G(H)$?

7. (Important) Let *G* be a group and let $G' = \langle aba^{-1}b^{-1} \rangle$, i.e., that is, *G'* is the subgroup of all finite products of elements in *G* of the form $aba^{-1}b^{-1}$.

(a) Show that G' is a subgroup of G. (G' is called the commutator subgroup of G)

(b) Show that G' is a normal subgroup of G.

(c) Show that G/G' is an abelian group.

(d) Let *H* be a normal subgroup of *G*. Show that G/H is abelian if and only if *H* contains G'.