University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Homework 8: Quotient groups
 Due on December 7
 Hand all the problems

Name: \qquad

1. For the groups in Question 1 in Homework 6, find the quotient group G / H if applicable.
2. Show that If G is a cyclic group, then G / H is a cyclic group.
3. Find the order of $9+\langle 4\rangle$ in \mathbb{Z}_{12}.
4. Let G be a group and let H be the torsion subgroup of G.
(a) Show that H is a normal subgroup.
(b) Show that every nonidentity element of G / H is of infinite order.
5. If $x^{2} \in H$ for all $x \in G$, prove that H is a normal subgroup of G and that G / H is abelian group.
6. (Important) Let G be a group and H is a subgroup of G. Define the normalizer of H in G, denoted by $N_{G}(H)$ by

$$
N_{G}(H):=\{a \in G \mid a H=H a\}
$$

(a) Prove that $N_{G}(H)$ is a subgroup of G.
(b) Let $G=S_{4}$ and $H=\operatorname{stab}(2)$. What is $N_{G}(H)$?
(c) Show that H is normal in $N_{G}(H)$.
(d) Show that if H is normal in a subgroup K, then $K \subseteq N_{G}(H)$.
(i.e., $N_{G}(H)$ is the largest subgroup where H is a normal subgroup of).
(e) If H is normal subgroup of G, what is $N_{G}(H)$?
7. (Important) Let G be a group and let $G^{\prime}=\left\langle a b a^{-1} b^{-1}\right\rangle$, i.e., that is, G^{\prime} is the subgroup of all finite products of elements in G of the form $a b a^{-1} b^{-1}$.
(a) Show that G^{\prime} is a subgroup of G. (G^{\prime} is called the commutator subgroup of G)
(b) Show that G^{\prime} is a normal subgroup of G.
(c) Show that G / G^{\prime} is an abelian group.
(d) Let H be a normal subgroup of G. Show that G / H is abelian if and only if H contains G^{\prime}.

