Project 1

University of Bahrain Department of Mathematics MATHS311: Abstract Algebra 1 Fall 2017 Dr. Abdulla Eid

Project 1: Maps from \mathbb{Z}_n to \mathbb{Z}_m

The aim of this project is to provide further practice in:

- 1. The groups $(\mathbb{Z}_n, +_n)$
- 2. Order of an element in a group
- 3. Generators of a cyclic group
- 4. Group homomorphisms

Let $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ be a group homomorphism. In this project, we would like to classify completely all such maps.

- 1. Show that φ is completely determined by the value of $\varphi(1)$.
- 2. Show that $o(\varphi(1))$ divides gcd(n, m).
- 3. Show that the map $\varphi : \mathbb{Z}_{18} \to \mathbb{Z}_{30}$ given by $\varphi(a) = 14a$ is **not** a group homomorphism.
- 4. Find the condition where the identity map $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ is a group homomorphism.
- 5. If $b \in \mathbb{Z}_m$ with o(b) divides gcd(n, m), then there exists a group homomorphism $\varphi_b : \mathbb{Z}_n \to \mathbb{Z}_m$ such that $\varphi_b(1) = b$.
- 6. Given the fact that the number of group homomorphisms $\varphi : \mathbb{Z}_n \to \mathbb{Z}_m$ is equal to gcd(n, m). Find all the group homomorphisms $\varphi : \mathbb{Z}_{18} \to \mathbb{Z}_{30}$.
- 7. Find the kernel and the image of two homomorphisms above.