University of Bahrain
Department of Mathematics
MATHS311: Abstract Algebra 1
Fall 2017
Dr. Abdulla Eid

Project 2: Dihedral Groups

The aim of this project is to provide further practice in:

1. Rigid Motion
2. Group of Symmetries
3. Dihedral Groups
4. Representation of a group

A symmetry of a geometric figure is a rearrangement of the figure preserving the arrangement of its sides and vertices as well as its distances and angles. A map from the plane to itself preserving the symmetry of an object is called a rigid motion.

We have seen the group of symmetries of the square D_{4} in class. Anagously we can define the nth dihedral group D_{n} to be the group of all rigid motions of the plane of regular n-gon. The group D_{n} consists of rotations and reflections.

1. What is the group of symmetries of an equilateral triangle D_{3} ? (Describe the elements as well as the Cayley's table)
(Hint: D_{3} is the symmetry group of the Mercedes-Benz logo)
2. What is the size of D_{n} ? (Hint: How many choices we can replace the first vertex? If the first vertex is fixed, how many choices we have for the second one? Try $=3,4,5$ to get an idea).
3. How many different rotations in D_{n} ?
4. Show that the subgroup of all rotations R_{n} is a cyclic group generated by a rotation r. What is the order of the rotation subgroup?
5. Show that any reflection has order 2 .
6. Let s be the reflection that fixes vertex 1 . Show that $s r s=r^{-1}$. conclude that D_{n} is nonabelian group.
7. Show that R_{n} is a normal subgroup of D_{n} and that D_{n} / R_{n} is a group of order 2 .
8. Show that D_{n} is generated by the elements r, s subject to the conditions $r^{n}=e, s^{2}=e, s r s=r^{-1}$.
