Section 6.1 Inner Product

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Define Inner Product.
- Examples of the inner product.
- Properties of the inner product.

Definition 1

General Inner Product An **inner product** is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- **4** $\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$ and $\langle (\mathbf{u}, \mathbf{u}) \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$ (positive definiteness axiom)

Example 2

Let $V = \mathbb{R}^2$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2$$

Find
$$\left\langle \begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} -2\\5 \end{pmatrix} \right\rangle$$
, $\left\langle \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\rangle$, $\left\langle \begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2 \end{pmatrix} \right\rangle$

Example 4

Let $V = \mathbb{R}^2$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

This is called the dot or Euclidean product.

Find
$$\left\langle \begin{pmatrix} -5\\3\\4 \end{pmatrix}, \begin{pmatrix} 11\\-2\\5 \end{pmatrix} \right\rangle$$
, $\left\langle \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1 \end{pmatrix} \right\rangle$, $\left\langle \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\-2 \end{pmatrix} - 2 \right\rangle$

Example 6

Let $V = \mathbb{R}^2$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 5u_2v_2$$

Find
$$\left\langle \begin{pmatrix} 3\\4 \end{pmatrix}, \begin{pmatrix} -2\\5 \end{pmatrix} \right\rangle$$
, $\left\langle \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\rangle$, $\left\langle \begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2 \end{pmatrix} \right\rangle$

Weighted inner product \mathbb{R}^n

Example 8

Let $V = \mathbb{R}^n$ and let w_1, \ldots, w_n be positive real numbers (weights).

Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \cdots + w_n u_n v_n$$

This is called the **dot** or **Euclidean** product.

Norm and distance

Definition 9

Let V be a real inner space. The **norm** (or **length**) of a vector \mathbf{v} of V is denoted by $||\mathbf{v}||$ and is defined by

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

and the distance between any two vectors ${\bf u}$ and ${\bf v}$ is defined by

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

A vector of norm 1 is called a **unit vector**.

Let
$$V=\mathbb{R}^2$$
 with the Euclidean product. Let $\mathbf{u}=inom{1}{1}$, $\mathbf{v}=inom{3}{2}$,

$$\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
, and $k = 5$. Find the following:

- (a) $\langle \mathbf{u}, \mathbf{w} \rangle$ (b) $\langle k\mathbf{u}, \mathbf{v} \rangle$ (c) $\langle u + v, w \rangle$ (d) $||\mathbf{u}||$
- (e) $d(\mathbf{u}, \mathbf{v})$ (f) $||\mathbf{u} k\mathbf{v}||$

Example 11

Let $V = \mathbb{R}^2$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 5u_2v_2$$

Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, and $k = 5$. Find the following: (a) $\langle \mathbf{u}, \mathbf{w} \rangle$ (b) $\langle k\mathbf{u}, \mathbf{v} \rangle$ (c) $\langle u + v, w \rangle$ (d) $||\mathbf{u}||$ (e) $d(\mathbf{u}, \mathbf{v})$ (f) $||\mathbf{u} - k\mathbf{v}||$

Matrix inner product on \mathbb{R}^n

Example 12

Let $V = \mathbb{R}^n$ and let A be invertible $n \times n$ matrix. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$

This is called the **inner product on** \mathbb{R}^n **generated by** A The Euclidean inner product is a special case with $A = I_n$ and the weighted inner product is a special case with

$$A = \begin{pmatrix} \sqrt{w_1} & 0 & 0 & \dots & 0 \\ 0 & \sqrt{w_2} & 0 & \dots & 0 \\ \vdots & \vdots & 0 & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \sqrt{w_n} \end{pmatrix}$$

Let
$$V = \mathbb{R}^2$$
 and $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$

Let
$$\mathbf{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, and $\mathbf{w} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$. Find the following: (a) $\langle \mathbf{u}, \mathbf{w} \rangle$ (b) $\langle \mathbf{u}, \mathbf{v} \rangle$ (c) $||\mathbf{u}||$ (d) $||\mathbf{u}||$

- (e) $d(\mathbf{u}, \mathbf{v})$ (f) $||\mathbf{u} \mathbf{v}||^2$

Inner product on square matrices

Definition 14

Let $V = \mathsf{Mat}(m, n, \mathbb{R}) nn$ and let U, V be invertible $n \times n$ matrices. Define

$$\langle U, V \rangle = tr \left(U^T V \right)$$

if U, V are two by two matrices, then what is $\langle U, V \rangle$?

Inner product on matrices

Example 15

Find $\langle U, V \rangle$ for

$$U = \begin{pmatrix} 3 & -2 \\ 4 & 8 \end{pmatrix}, V = \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 2 \\ -3 & 5 \end{pmatrix}, V = \begin{pmatrix} 4 & 6 \\ 0 & 8 \end{pmatrix}$$

Inner product on Polynomials

Definition 16

Let $V = \mathbb{P}_n$. Let $p = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n$ and $q = b_0 + b_1X + b_2X^2 + \cdots + b_nX^n$ be two polynomials. Define the **standard inner product** to be

$$\langle p,q\rangle=a_0b_0+a_1b_1+a_2b_2+\cdots+a_nb_n$$

If x_0, x_1, \ldots, x_n are distinct real numbers, define the **evaluation inner product** to be

$$\langle p, q \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) + \cdots + p(x_n)q(x_n)$$

Inner product on matrices

Example 17

Find < p, q >, ||p||, $||q||^2$, and d(p, q) for

- $p = X + 3X^2, q = 2 X + 4X^2.$
- **3** $o = 1 2X + 3X^2$, $q = 4 + X^2$ with $x_0 = 2$, $x_1 = -1$, $x_2 = 1$.

Inner Product on C(|a,b|)

Example 18

Let V = C([a, b]) be the vector space of continuous functions on an interval [a, b]. Define

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$

Let f(x) = x + 1, g(x) = x - 1, h(x) = 5, and a = 1, b = 2. Find the following:

- (a) $\langle \mathbf{u}, \mathbf{w} \rangle$ (b) $\langle 8\mathbf{u}, \mathbf{v} \rangle$ (c) $\langle u + v, w \rangle$ (d) $||\mathbf{u}||$

Non-example, Lorentian Inner product

Example 19

Let $V = \mathbb{R}^4$. Define

$$\langle \mathbf{u}, \mathbf{v} \rangle = x_1 x_2 + y_1 y_2 + z_1 z_2 - t_1 t_2$$

This is called the **Lorentzian** inner product. This is of central importance in Einstein's theory of special relativity.

Note: This is not an inner product! Why?

Find
$$\left\langle \begin{pmatrix} -5\\3\\4\\3 \end{pmatrix}, \begin{pmatrix} 11\\-2\\5\\2 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1\\0\\1\\7 \end{pmatrix}, \begin{pmatrix} 0\\-2\\1\\2 \end{pmatrix} \right\rangle.$$

Continue

Two space time vectors
$$X_1=\begin{pmatrix}x_1\\y_1\\z_1\\t_1\end{pmatrix}$$
 and $X_2=\begin{pmatrix}x_2\\y_2\\z_2\\t_2\end{pmatrix}$ are

Separated by a distance
$$\sqrt{\langle X_1,X_2 \rangle}$$
 if $\langle X_1,X_2 \rangle \geq 0$

Separated by a time
$$\sqrt{-\langle X_1,X_2\rangle}$$
 if $\langle X_1,X_2\rangle\leq 0$

Theorem 21

Norm and Distance Let V be an inner product vector space. Then,

- $\mathbf{0} \langle \mathbf{0}, \mathbf{v} \rangle = \mathbf{0}.$
- $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.
- **3** $||k\mathbf{v}|| = |k|||\mathbf{v}||$.

Example 22

Prove that in any inner product vector space, we have

$$||\mathbf{u} + \mathbf{v}||^2 + ||\mathbf{u} - \mathbf{v}||^2 = 2||u||^2 + 2||\mathbf{v}||^2$$

Example 23

Prove that in any inner product vector space, we have

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4} ||\mathbf{u} + \mathbf{v}||^2 - \frac{1}{4} ||\mathbf{u} - \mathbf{v}||^2 = 2||\mathbf{u}||^2 + 2||\mathbf{v}||^2$$