Section 6.1 Inner Product

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- Cauchy Schwarz Inequality.
- 2 Angle between vectors.
- Properties of length and distance.
- Orthogonality.
- Orthogonal Complement.

Cauchy Schwarz Ineqality

Theorem 1

If u, v are two vectors, then

 $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}||||\mathbf{v}||$

Proof: Let $a = ||\mathbf{u}||^2$, $b = 2 \langle \mathbf{u}, \mathbf{v} \rangle$, and $c = \langle \mathbf{v}, \mathbf{v} \rangle$. Consider $\langle t\mathbf{u} + \mathbf{v}, t\mathbf{u} + \mathbf{v} \rangle \ge 0$ so the discriminant is less than or equal to zero.

Consequences of Cauchy Schwarz Inequality

$$\begin{aligned} |\langle \mathbf{u}, \mathbf{v} \rangle| &\leq ||\mathbf{u}|| ||\mathbf{v}|| \\ \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|}{||\mathbf{u}|| ||\mathbf{v}||} &\leq 1 \\ -1 &\leq \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| ||\mathbf{v}||} \leq 1 \\ \cos \theta &= \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| ||\mathbf{v}||} \text{ and } 0 \leq \theta \leq \pi \end{aligned}$$

Definition 2

The angle θ between **u** and **v** is defined by

$$\theta = \cos^{-1}\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| |\mathbf{v}||}\right)$$

Find the angle

Example 3

Find the cosine of the angle between ${\bf u}$ and ${\bf v},$ with the standard inner product.

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } v = \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}.$$

$$u = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } v = \begin{pmatrix} 5 \\ 2 \\ -3 \\ -4 \end{pmatrix}.$$

$$p = 1 + 3X - 5X^2, q = 2 - 3X^2$$

$$U = \begin{pmatrix} 2 & 4 \\ 3 & 2 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & -2 \end{pmatrix}$$

Properties of Length and Distance

Theorem 4

If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three vectors, then

 $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ (Triangle inequality for vectors)

 $d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w}) + d(\mathbf{v}, \mathbf{w})$ (Triangle inequality for distances)

Proof: Consider $||\mathbf{u} + \mathbf{v}||^2$.

Orthogonality

Definition 5

Two vectors \mathbf{u}, \mathbf{v} are called **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Question: What is the angle between any two orthogonal vectors?

Check for orthongonality

Example 6

Determine whether ${\bf u}$ and ${\bf v}$ are orthogonal or not, with the standard inner product.

$$u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } v = \begin{pmatrix} 4 \\ 4 \\ -4 \end{pmatrix}.$$

$$u = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } v = \begin{pmatrix} 5 \\ 2 \\ -3 \\ -4 \end{pmatrix}.$$

$$f = x, q = X^2 \text{ on } [-1, 1].$$

$$U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Pythagorean Theorem

Theorem 7

If \mathbf{u}, \mathbf{v} are orthogonal vectors, then

 $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}|| + ||\mathbf{v}||$

Proof: Consider $||\mathbf{u} + \mathbf{v}||^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$.

Example 8

Show that if \mathbf{u}, \mathbf{v} are orthogonal unit vectors in V, then $||\mathbf{u} - \mathbf{v}|| = \sqrt{2}$.

Dr. Abdulla Fid

Orthogonal Complement

Definition 9

If W is a subspace of an inner vector space V, then the set of all vectors in V that are orthogonal to every vector in W is called the **orthogonal** complement of W and is denoted by W^{\perp} .

$$W^{\perp} := \{ \hat{w} \in V \mid \langle \hat{w}, w
angle = 0, ext{ for all } w \in W \}$$

Theorem 10

Row space and null space are orthogonal

Example 11

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 , $\mathbf{w}_2 = \begin{pmatrix} -1 \\ -4 \\ 2 \end{pmatrix}$, $\mathbf{w}_3 = \begin{pmatrix} 4 \\ -5 \\ 13 \end{pmatrix}$

Row space and null space are orthogonal

Example 12

Let $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ where,

$$\mathbf{w}_1 = \begin{pmatrix} 3\\0\\1\\-2 \end{pmatrix}, \mathbf{w}_2 = \begin{pmatrix} -1\\-2\\-2\\1 \end{pmatrix}, \mathbf{w}_3 = \begin{pmatrix} 4\\2\\3\\-3 \end{pmatrix}$$

