Section 6.1 Inner Product

Dr. Abdulla Eid

College of Science
MATHS 211: Linear Algebra

Goal:
(1) Cauchy Schwarz Inequality.
(2) Angle between vectors.
(3) Properties of length and distance.
(3) Orthogonality.
(5) Orthogonal Complement.

Cauchy Schwarz Ineqality

Theorem 1
If \mathbf{u}, \mathbf{v} are two vectors, then

$$
|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|
$$

Proof: Let $a=\|\mathbf{u}\|^{2}, b=2\langle\mathbf{u}, \mathbf{v}\rangle$, and $c=\langle\mathbf{v}, \mathbf{v}\rangle$. Consider $\langle t \mathbf{u}+\mathbf{v}, t \mathbf{u}+\mathbf{v}\rangle \geq 0$ so the discriminant is less than or equal to zero.

Consequences of Cauchy Schwarz Inequality

$$
\begin{aligned}
|\langle\mathbf{u}, \mathbf{v}\rangle| & \leq\|\mathbf{u}\|\|\mathbf{v}\| \\
\frac{|\langle\mathbf{u}, \mathbf{v}\rangle|}{\|\mathbf{u}\|\|v\|} & \leq 1 \\
-1 & \leq \frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|} \leq 1 \\
\cos \theta & =\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|} \text { and } 0 \leq \theta \leq \pi
\end{aligned}
$$

Definition 2
The angle θ between \mathbf{u} and \mathbf{v} is defined by

$$
\theta=\cos ^{-1}\left(\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)
$$

Find the angle

Example 3

Find the cosine of the angle between \mathbf{u} and \mathbf{v}, with the standard inner product.
(1) $\mathbf{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}4 \\ 4 \\ -4\end{array}\right)$.
(2) $\mathbf{u}=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}5 \\ 2 \\ -3 \\ -4\end{array}\right)$.
(3) $p=1+3 X-5 X^{2}, q=2-3 X^{2}$.
(4) $U=\left(\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right), V=\left(\begin{array}{cc}0 & 1 \\ 0 & -2\end{array}\right)$

Properties of Length and Distance

Theorem 4
If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three vectors, then

$$
\begin{gathered}
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\| \quad \text { (Triangle inequality for vectors) } \\
d(\mathbf{u}, \mathbf{v}) \leq d(\mathbf{u}, \mathbf{w})+d(\mathbf{v}, \mathbf{w}) \quad \text { (Triangle inequality for distances) }
\end{gathered}
$$

Proof: Consider $\|\mathbf{u}+\mathbf{v}\|^{2}$.

Orthogonality

Definition 5

Two vectors \mathbf{u}, \mathbf{v} are called orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

Question: What is the angle between any two orthogonal vectors?

Check for orthongonality

Example 6

Determine whether \mathbf{u} and \mathbf{v} are orthogonal or not, with the standard inner product.
(1) $\mathbf{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}4 \\ 4 \\ -4\end{array}\right)$.
(2) $\mathbf{u}=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}5 \\ 2 \\ -3 \\ -4\end{array}\right)$.
(3) $f=x, q=X^{2}$ on $[-1,1]$.
(2) $U=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), V=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$

Pythagorean Theorem

Theorem 7
If \mathbf{u}, \mathbf{v} are orthogonal vectors, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|+\|\mathbf{v}\|
$$

Proof: Consider $\|\mathbf{u}+\mathbf{v}\|^{2}=\langle\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle$.

Example 8

Show that if \mathbf{u}, \mathbf{v} are orthogonal unit vectors in V, then $\|\mathbf{u}-\mathbf{v}\|=\sqrt{2}$.

Orthogonal Complement

Definition 9

If W is a subspace of an inner vector space V, then the set of all vectors in V that are orthogonal to every vector in W is called the orthogonal complement of W and is denoted by W^{\perp}.

$$
W^{\perp}:=\{\hat{w} \in V \mid\langle\hat{w}, w\rangle=0, \text { for all } w \in W\}
$$

Theorem 10
(1) W^{\perp} is a subspace of W.
(2) $W \cap W^{\perp}=\{\mathbf{0}\}$
(3) $\left(W^{\perp}\right)^{\perp}$

Row space and null space are orthogonal

Example 11

Let $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ where,

$$
\mathbf{w}_{1}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
-1 \\
-4 \\
2
\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}
4 \\
-5 \\
13
\end{array}\right)
$$

Row space and null space are orthogonal

Example 12

Let $W=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ where,

$$
\mathbf{w}_{1}=\left(\begin{array}{c}
3 \\
0 \\
1 \\
-2
\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c}
4 \\
2 \\
3 \\
-3
\end{array}\right)
$$

