Section 8.1 Linear Transformation

Dr. Abdulla Eid

College of Science
MATHS 211: Linear Algebra
(1) Define Linear Transformations.
(2) Examples of Linear Transformations.
(3) Finding the linear transformation from a basis.
(9) Kernel and Range of a linear transformations.
(5) Properties and of Kernel and Images.
(6) Rank and Nullity of a linear transformation.

Definition 1

A linear transformation is a function $T: V \rightarrow W$ with
(1) $T(k \mathbf{v})=k T(\mathbf{v}) . \quad$ (Homogeneity Property)
(2) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$. (Additive Property)

In the special case, where $V=W$, the linear transformation T is called linear operator.

Simple Consequences from the definition

$$
\begin{aligned}
T\left(k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}\right) & =T\left(k_{1} \mathbf{v}_{1}\right)+T\left(k_{2} \mathbf{v}_{2}\right) \\
& =k_{1} T\left(\mathbf{v}_{1}\right)+k_{2} T\left(\mathbf{v}_{2}\right)
\end{aligned}
$$

- In general,
$T\left(k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{n} \mathbf{v}_{n}\right)=k_{1} T\left(\mathbf{v}_{1}\right)+k_{2} T\left(\mathbf{v}_{2}\right)+\cdots+k_{n} T\left(\mathbf{v}_{n}\right)$

$$
\begin{aligned}
T(\mathbf{0}) & =T(\mathbf{0}+\mathbf{0}) \\
T(\mathbf{0}) & =T(\mathbf{0})+T(\mathbf{0}) \\
\mathbf{0}_{W} & =T(\mathbf{0}) \quad \text { Zero goes to zero }
\end{aligned}
$$

$$
T(\mathbf{u}-\mathbf{v})=T(\mathbf{u})-T(\mathbf{v})
$$

Matrix Transformation

Example 2

Let A be any $m \times n$ matrix. Define the linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
T_{A}(\mathbf{x})=A \mathbf{x}
$$

Zero Transformation

Example 3

Let V be any vector space. Define the linear transformation $T: V \rightarrow W$ by

$$
T(\mathbf{x})=\mathbf{0}_{W}
$$

Identity Operator

Example 4

Let V be any vector space. Define the linear transformation (operator) $T: V \rightarrow V$ by

$$
T(\mathbf{x})=\mathbf{x}
$$

Dilation and Contraction Operators

Example 5

Let V be any vector space. Define the linear operator $T_{k}: V \rightarrow V$ by

$$
T_{k}(\mathbf{x})=k \mathbf{x}
$$

If $0<k<1$, then T_{k} is called the contraction of V with factor k and if $k>1$, it is called the dilation of V with factor k.

A Linear Transformation from \mathbb{P}_{n} to \mathbb{P}_{n+1}

Example 6

Define the linear operator $T: \mathbb{P}_{n} \rightarrow \mathbb{P}_{n}$ by

$$
T(p(X))=X P(X)
$$

$$
T\left(c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}\right)=c_{0} X+c_{1} X^{2}+c_{2} X^{3}+\cdots+c_{n} X^{n+1}
$$

Linear Transformation of the Matrices

Example 7

Define the linear transformation $T: \operatorname{Mat}(m, n, \mathbb{R}) \rightarrow \operatorname{Mat}(n, m, \mathbb{R})$ by

$$
T(A)=A^{T}
$$

Linear Transformation of the Matrices

Example 8

Define the function $T: \operatorname{Mat}(m, n, \mathbb{R}) \rightarrow \mathbb{R}$ by

$$
T(A)=\operatorname{det}(A)
$$

Is T a linear transformation?

Evaluation Transformation

Example 9

Let $c_{1}, c_{2}, \ldots, c_{n}$ be real numbers. Define the linear transformation $T: \operatorname{Maps}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}^{n}$ by

$$
T(f)=\left(f\left(c_{1}\right), f\left(c_{2}\right), \ldots, f\left(c_{n}\right)\right)
$$

Finding Linear Transformation from the image of a basis

Example 10

Consider the basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ of \mathbb{R}^{2}, where

$$
\mathbf{v}_{1}=\binom{2}{1}, \quad \mathbf{v}_{2}=\binom{-1}{3}
$$

and let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
T\left(\mathbf{v}_{1}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad T\left(\mathbf{v}_{2}\right)=\left(\begin{array}{l}
0 \\
3 \\
5
\end{array}\right)
$$

Find a formula for $T\left(x_{1}, x_{2}\right)$ in general and use it to find $T(2,-3)$ and $T(4,-1)$.

Finding Linear Transformation from the image of a basis

Example 11

Consider the basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ of \mathbb{R}^{3}, where

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
T\left(\mathbf{v}_{1}\right)=\left(\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right), \quad T\left(\mathbf{v}_{2}\right)=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right), \quad T\left(\mathbf{v}_{3}\right)=\left(\begin{array}{c}
1 \\
5 \\
-1
\end{array}\right) .
$$

Find a formula for $T\left(x_{1}, x_{2}, x_{3}\right)$ in general and use it to find $T(2,4,-1)$ and $T(4,3,4)$.

Definition 12

If $T: V \rightarrow W$ be a linear transformation. The set of all vectors in V that T maps into zero is called the kernel of T and denoted by $\operatorname{ker}(T)$.the set of all vectors in W that are images under T of at least one vector in V is called the range of T and is denoted by $R(T)$.

$$
\begin{gathered}
\operatorname{ker}(T):=\left\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}_{W}\right\} \\
R(T):=\{\mathbf{w} \in W \mid T(\mathbf{v})=\mathbf{w}, \text { for some } \mathbf{v} \in V\}
\end{gathered}
$$

Matrix Transformation

Example 13

Let A be any $m \times n$ matrix. Define the linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
T_{A}(\mathbf{x})=A \mathbf{x}
$$

Zero Transformation

Example 14

Let V be any vector space. Define the linear transformation $T: V \rightarrow W$ by

$$
T(\mathbf{x})=\mathbf{0}_{W}
$$

Identity Operator

Example 15

Let V be any vector space. Define the linear transformation (operator) $T: V \rightarrow V$ by

$$
T(\mathbf{x})=\mathbf{x}
$$

Dilation and Contraction Operators

Example 16
Let V be any vector space. Define the linear operator $T_{k}: V \rightarrow V$ by

$$
T_{k}(\mathbf{x})=k \mathbf{x}
$$

If $0<k<1$, then T_{k} is called the contraction of V with factor k and if $k>1$, it is called the dilation of V with factor k.

A Linear Transformation from \mathbb{P}_{n} to \mathbb{P}_{n+1}

Example 17
Define the linear operator $T: \mathbb{P}_{n} \rightarrow \mathbb{P}_{n}$ by

$$
T(p(X))=X P(X)
$$

$$
T\left(c_{0}+c_{1} X+c_{2} X^{2}+\cdots+c_{n} X^{n}\right)=c_{0} X+c_{1} X^{2}+c_{2} X^{3}+\cdots+c_{n} X^{n+1}
$$

Theorem 18
Let $T: V \rightarrow W$ be a linear transformation. $\operatorname{Ker}(T)$ and $R(A)$ are both subspaces of V and W.
(1) Dimension of the $\operatorname{ker}(T)$ is called the nullity of T.
(2) Dimension of the $R(A)$ is called the rank of T.

Theorem 19

Dimension Theorem Let $T: V \rightarrow W$ be a linear transformation, then

$$
\operatorname{rank}(T)+\operatorname{Nullity}(T)=\operatorname{dim}(V)=n
$$

Example 20

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T(x, y)=(x-3 y,-2 x+6 y)
$$

Which of the following vectors are in $R(T)$?
$(1,-2),(3,1),(-2,4)$ Which of the following vectors are in $\operatorname{ker}(T)$? $(1,-3),(3,1),(-6,-2)$ Find a basis for the $\operatorname{ker}(T)$? Find a basis for the $R(T)$? Verify the formula in the dimension theorem?

Example 21

Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the linear transformation given by

$$
T(p(X))=(X+1) p(X)
$$

Which of the following vectors are in $R(T)$?
$X+X^{2}, 1+X, 3-X^{2}$ Which of the following vectors are in $\operatorname{ker}(T)$? $X^{2}, 0, X+1$ Find a basis for the $\operatorname{ker}(T)$? Find a basis for the $R(T)$? Verify the formula in the dimension theorem?

