Section 2.5 Continuity 2 Lectures

Dr. Abdulla Eid

Department of Mathematics

MATHS 101: Calculus I

Topics:

(1) Continuous functions on a point (piece-wise functions).
(2) Continuous functions on an interval (other functions).
(3) The intermediate value theorem (application of calculus).

Intuitive Idea

Motivational Question: What is a continuous function?

Answer: Intuitively, a function f is continuous function if we can sketch the graph of the function without lifting off the pencil.

Non continuous functions

" Not Continuous function (A hole is removed)"
" Removable discontinuity"

Non continuous functions

"Not Continuous function"
"Jump discontinuity"

Continue...

To check if a function is continuous, we have two ways:

Geometry

sketch the graph
of the function and check if you can trace the graph without

Calculus
Use the limits!
easier!
lifting off the pencil
Tedious to graph a function!

Continuity using calculus

To determine whether a function is continuous at a point a using the limit, we check:
(1) $\lim _{x \rightarrow a} f(x)$ exist. $\left(\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)\right)$. (No jumps)
(2) $f(a)$ exist.
(3) $\lim _{x \rightarrow a} f(x)=f(a)$. (No holes)

Piece-wise functions

Example 1

Determine whether the function is continuous at $x=2$ or not.

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2}, & x<2 \\ 3 x-2, & x>2 \\ x^{2}, & x=2\end{cases}
$$

Solution:

- $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3 x-2=4$.
- $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}==\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+2)}{(x-2)}=$ $\lim _{x \rightarrow 2^{-}}(x+2)=4$.
(1) $\lim _{x \rightarrow 2} f(x)=4$, since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$.
(2) $f(2)=(2)^{2}=4$

Therefore, the function is continuous at $x=2$.

Exercise 2

Consider

$$
f(x)= \begin{cases}\frac{3 x+1}{x+2}, & x \neq 2 \\ 5, & x=2\end{cases}
$$

Solution:

- $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{3 x+1}{x+2}==\frac{7}{4}$.
- $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{3 x+1}{x+2}==\frac{7}{4}$.
(1) $\lim _{x \rightarrow 2} f(x)=\frac{7}{4}$, since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$.
(2) $f(2)=5$.

The function is not continuous at $x=2$, since $\lim _{x \rightarrow 2} f(x) \neq f(2)$.

Example 3

Consider

$$
f(x)= \begin{cases}\frac{x^{3}-8}{x-2}, & x \neq 2 \\ 12, & x=2\end{cases}
$$

Solution:

- $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)}=$ $\lim _{x \rightarrow 2^{-}}\left(x^{2}+2 x+4\right) 12$.
- $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-8}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)}=$ $\lim _{x \rightarrow 2^{+}}\left(x^{2}+2 x+4\right) 12$.
(1) $\lim _{x \rightarrow 2} f(x)=12$, since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$.
(2) $f(2)=12$.

The function is continuous at $x=2$, since $\lim _{x \rightarrow 2} f(x)=f(2)$.

Exercise 4
Consider

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2}, & 1.5<x<2 \\ 5 x^{2}+1, & x \geq 2 \\ \frac{x^{2}-1}{x-1}, & x \neq 1 \\ 3, \quad x<0 & \end{cases}
$$

(1) Is the function continuous at $x=2$
(2) Is the function continuous at $x=1$
(3) Is the function continuous at $x=0$

Exercise 5

(1) Does $f(-1)$ exist?
(2) Is the function continuous at $x=-1$
(3) Is the function continuous at $x=1$
(9) Is the function continuous at $x=2$
(5) Is the function continuous at $x=0$
(0) Where the function is continuous?
(3) What should be the value of $f(2)$ for the function to be continuous

Example 6

For what value of a is the function

$$
f(x)= \begin{cases}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{cases}
$$

continuous at $x=3$.
Solution:
Since the function is continuous at $x=3$, then we must have the left limit equal to the right limit.

$$
\begin{array}{r}
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(x)=f(3) \\
\lim _{x \rightarrow 3^{+}} 2 a x=\lim _{x \rightarrow 3^{-}} x^{2}-1=6 a \\
6 a=8=6 a \rightarrow 6 a=8 \\
a=\frac{8}{6}
\end{array}
$$

Example 7

For what value of a and b is the function

$$
f(x)= \begin{cases}3 a x, & x<1 \\ 5 x+b, & x>1 \\ 6, & x=1\end{cases}
$$

continuous at $x=1$.
Solution:
Since the function is continuous at $x=1$, then we must have the left limit equal to the right limit equal the value of the function at $x=1$.

$$
\begin{array}{r}
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=f(1) \\
\lim _{x \rightarrow 1^{+}} 3 a x=\lim _{x \rightarrow 1^{-}} 5 x+b=6 \\
3 a=5+b=6 \rightarrow 3 a=6 \quad 5+b=6 \\
a=2 \quad b=1
\end{array}
$$

Exercise 8

For what value(s) of a is the function

$$
f(x)= \begin{cases}a^{2} x-2 a, & x \geq 2 \\ 12, & x<2\end{cases}
$$

continuous at $x=2$.

Nowhere continuous function

Exercise 9

(Challenging problem) Show whether the following function is continuous or not at any number of your choice.

$$
f(x)= \begin{cases}0, & x \text { is rational } \\ 1, & x \text { is irrational }\end{cases}
$$

2 - Continuous functions on intervals (other functions)

Definition 10

A function is continuous on an interval if it is continuous at every point of the interval.

Other functions

Question: How to check if a given function is continuous on some interval? Answer: we have a shortcut which is given in the following theorem:

Theorem 11

The functions are continuous at every point in their domain:
(1) Polynomials. $(-\infty, \infty)$.
(2) Rational functions. $(-\infty, \infty)$ except where denominator $=0$.
(3) Root function. inside ≥ 0 in case of even root.
(1) Trigonometric functions.
(5) Exponential functions. $(-\infty, \infty)$.
(0) Logarithmic functions. inside ≥ 0

In short, finding where the function is continuous is exactly the same as finding the domain of the function.

Example 12

(Zero denominator) Find the points of discontunity of $f(x)=\frac{3}{x-1}$.
Solution: Here we would have problems (undefined values) only if the denominator is equal to zero, so we need to find when the denominator is equal to zero.

$$
\text { denominator }=0 \rightarrow x-1=0 \rightarrow x=1
$$

So the function is discontinuous only at $x=1$.

Exercise 13

(Zero denominator) Find the domain of $f(x)=\frac{x^{2}-1}{3 x^{2}-5 x-2}$.
Solution: Similarly to the previous example, we would have problems (undefined values) only if the denominator is equal to zero,

$$
\text { denominator }=0 \rightarrow 3 x^{2}-5 x-2=0 \rightarrow x=2 \quad \text { or } \quad x=\frac{-1}{3}
$$

Example 14

(Negative inside the root)the interval where the function $f(x)=\sqrt{2 x-4}$ is continuous.

Solution: Here we would have problems (undefined values) only if there is a negative inside the square root, so we need to find all values that make $2 x-4$ is greater than or equal to zero, so we need to solve the inequality

$$
\text { inside } \geq 0 \rightarrow 2 x-4 \geq 0 \rightarrow x \geq 2
$$

So the domain of f is the set of all values x such that $x \geq 2$, i.e., $[2, \infty)$

Exercise 15

(Negative inside the root and zero in the denominator) Find the interval(s) where the following function is continuous $f(x)=\frac{3}{\sqrt{x-4}}$.

Solution: Here we would have two problems (undefined values) only if there is a negative inside the square root or zero in the denominator, so we need to find all values that make $x-4$ is is equal to zero and we exclude them. Then we find all the values that make $x-4$ non-negative, so we need to solve the first

$$
\begin{gathered}
\text { denominator }=0 \quad \text { and } \quad \text { inside } \geq 0 \\
x-4=0 \text { and } x-4 \geq 0
\end{gathered}
$$

So the domain of f is the set of all values x such that $x \geq 4$ and $x \neq 4$, i.e., $(4, \infty)$

Properties of continuous functions

Theorem 16
If f and g are two continuous functions on some interval, then so $f \pm g$, $f \cdot g, \frac{f}{g}(g \neq 0), f^{n}, \sqrt[n]{f}$ (based on the domain).

Exercise 17

If f is continuous function at a and g is continuous function at $b=f(a)$, then the composite $g \circ f$ is continuous function at a.
(Hint: Compute $\lim _{x \rightarrow a}(g \circ f)(x)$)

3 - Intermediate Value Theorem (Application of Calculus)

Here we give an application of calculus to finding the location of a root to an equation.

Definition 18
A number c is called a root (zero) for a function f if

$$
f(c)=0
$$

Theorem 19
Let f be a continuous function on an interval $[a, b]$ such that $f(a)$ and $f(b)$ have different signs, then there exist a root $c \in(a, b)$ such that $f(c)=0$.

Example 20

Show there exists a root for $x^{3}-x-1=0$ between 1 and 2 .
Solution: Note that the function is continuous (polynomial) and we have

$$
f(1)=-1<0 \quad f(2)=5>0
$$

Therefore, by the IVT, there must be a root $c \in(1,2)$ such that $f(c)=0$. The IVT does not tell us how to find that root.

Exercise 21

Show there exists a root for $x^{3}-3 x-1=0$.
Solution: Note that the function is continuous (polynomial). Here we do not have an interval, so we need to find a suitable interval (two end-points with different sign). One choice is 0 , so we have $f(0)=-1<0$. Now we look for some other number with a positive value, for example, $f(2)=1>0$. Therefore, by the IVT, there must be a root $c \in(0,2)$ such that $f(c)=0$. The IVT does not tell us how to find that root.

Example 22

Show there exist a number $c \in(0,1)$ such that $\sqrt[3]{c}=1-c$.
Solution: The problem can be translate as to find a number $c \in(0,1)$ such that $\sqrt[3]{c}-1+c=0$, i.e., we need to show that there is a root for the equation $\sqrt[3]{x}-1+x=0$. Note that the function is continuous. We have $f(0)=-1<0$ and $f(1)=1>0$ Therefore, by the IVT, there must be a root $c \in(0,1)$ such that $f(c)=0$, i.e., we have $\sqrt[3]{c}=1-c$.

Exercise 23

(Challenging Problem) The fixed point theorem Suppose f is a continuous function on $[0,1]$ such that $0 \leq f(x) \leq 1$. Show there exist $c \in(0,1)$ such that $f(c)=c$.
(Hint: Apply IVT to $g(x)=f(x)-x$).

