Section 3.10 Related Rates 2 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Rate of change

Recall:

- If a line has a slope m=3, it means that for every one step to the right, we move along the line 3 steps up. In this case, as x increases, y increases.
- If a line has a slope m=-2, it means that for every 1 step to the right, we move along the line 2 steps down. In this case, as x increases, y decreases.

Exercise 1

If a line has a slope $\frac{2}{-3}$. What does that tells you about the line?

For general function y = f(x), for every step to the right, how many steps to go up/down? How do we measure that change in y? If x changes by 1, an estimate of the change in y is $\frac{dy}{dx}$.

Definition 2

The derivative of y = f(x) can be interpreted as *rate of change* of y in term of x.

In this section, we have our variables are functions in t. so for example, we have

- **1** $\frac{dx}{dt}$ is the rate change in x with respect to the time t. If $\frac{dx}{dt} = 4$, it means that for every one unit in time, x increases by 4 units.
- ② $\frac{dr}{dt}$ is the rate change in r with respect to the time t. If $\frac{dr}{dt} = -2$ cm/second, it means that for every one second, r decreases 2 cm.

If
$$y = x^2$$
 and $\frac{dx}{dt} = 3$. What is $\frac{dy}{dt}$ when $x = -1$?

Solution:

Given:
$$\frac{dx}{dt} = 3$$
 and $x = -1$.

Required: $\frac{dy}{dt}$.

Relation: $y = x^2$

$$\frac{dy}{dt} = 2x \frac{dx}{dt}$$

$$\frac{dy}{dt} = 2(-1)(3) = -6$$

Exercise 4

If $z = 3y^3$ and $\frac{dz}{dt} = 10$. What is $\frac{dy}{dt}$ when y = 2?

Air is being pumped in a spherical balloon so that its volume increases at a rate of 500 cm³/second. How fast is the radius of the balloon increases when the diameter is 50 cm? (Note that the volume of the sphere is $V = \frac{4}{3}\pi r^3$.

Solution:

Given: $\frac{dV}{dt} = 500$ and $D = 50 \rightarrow r = \frac{D}{2} = 25$. Required: $\frac{dr}{dt}$.

Required: $\frac{dr}{dt}$.

Relation: $V = \frac{4}{3}\pi r^3$

$$\begin{split} \frac{dV}{dt} &= \frac{4}{3}\pi (3r^2)\frac{dr}{dt} \\ 500 &= 4\pi (25)^2\frac{dr}{dt} \rightarrow \frac{dr}{dt} = \frac{500}{4\pi (25)^2} \text{ cm / second} \end{split}$$

Exercise 6

A circular disk is expanding at a rate $10~\rm{cm^2/second}$. Find the rate of change of the Diameter of the disk when the radius is 5 cm.

Each side of a square is increasing at a rate of 6 cm/second. At what rate is the area of the square increases when the area of the square is 16 cm^2 .

Solution:

Given: $\frac{dx}{dt} = 6$ and A = 16.

Required: $\frac{dA}{dt}$.

Relation: $A = x^2$

$$\frac{dA}{dt} = 2x \frac{dx}{dt}$$

$$\frac{dA}{dt} = 2(4)(6) = \frac{dA}{dt} = 24 \text{ cm}^2 / \text{second}$$

Exercise 8

The length ℓ of a rectangle is decreasing at the rate of 2 cm/second while the width w is increasing at the rate of 2 cm/second when $\ell=12$ cm and w=5 cm. Find the rate of change of

- Area
- Perimeter
- 4 Length of the diagonal

A ladder is 5 m long rests against a vertical wall. If the bottom of the ladder moves away at rate 0.5 m/second. How fast the top of the ladder slides down when the bottom of the ladder is 4 m from the wall.

Solution:

Given:
$$\frac{dx}{dt} = 0.5$$
 and $\ell = 5$, $x = 4$.

Required:
$$\frac{dy}{dt}$$
.

Required:
$$\frac{dy}{dt}$$
.
Relation: $x^2 + y^2 = 25$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2(4)(0.5) + 2(3)(\frac{dy}{dt}) = 0$$
$$4 + 6\frac{dy}{dt} = 0 \to \frac{dy}{dt} = \frac{-4}{6} \text{ m / second}$$

An airplane is moving parallel to the ground on elevation 10 km with a rate of 6 km/minute. Find the rate of change for the angle where an observer observes the airplane when his angle is $\frac{\pi}{3}$.

Solution:

Given:
$$\frac{dx}{dt} = 6$$
 and $y = 10$, $\theta = \pi/3$

Given:
$$\frac{dx}{dt} = 6$$
 and $y = 10$, $\theta = \pi/3$.
Required: $\frac{d\theta}{dt}$.
Relation: $\tan \theta = \frac{10}{x}$ (hence $x = \frac{10}{\tan(\frac{\pi}{3})}$)

$$\sec^2 \theta \cdot \frac{d\theta}{dt} = \frac{-10}{x^2} \cdot \frac{dx}{dt}$$
$$2\frac{d\theta}{dt} = \frac{-10}{()^2} \cdot 6 \to \frac{d\theta}{dt} = \text{ radian / minute}$$

Exercise 11

The area of a triangle with sides \emph{a} and \emph{b} and contained angle $\emph{\theta}$ is given by

$$A = \frac{1}{2}ab\sin\theta$$

If a increases at a rate of 2.5 cm/min, b increases at a rate of 1.5 cm/min, and θ increases at a rate of 0.2 rad/min. How fast is the area increasing when a=2 cm, b=3 cm, and $\theta=\frac{\pi}{3}$.

A cube's surface area increases at a rate of 72 in²/second. At what rate the cube volume changes when the edge of the cube is 3 in? (Note that the volume of the cube is $V=x^3$ and the suface area is $S=6x^2$)

Solution:

Given: $\frac{dS}{dt} = 72$ and x = 3.

Required: $\frac{dV}{dt}$.

Relation: $V = x^3$

$$\frac{dV}{dt} = (3x^2)\frac{dx}{dt} \to \frac{dV}{dt} = 27\frac{dx}{dt}$$

$$S = 6x^{2} \rightarrow \frac{dS}{dt} = 12x \frac{dx}{dt} \rightarrow 72 = 36 \frac{dx}{dt} \rightarrow \frac{dx}{dt} = 2$$
$$\frac{dV}{dt} = 27(2) = 54 \text{ in}^{3}/\text{second}$$