Section 3.10 Related Rates

2 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Rate of change

Recall:

- If a line has a slope $m=3$, it means that for every one step to the right, we move along the line 3 steps up. In this case, as x increases, y increases.
- If a line has a slope $m=-2$, it means that for every 1 step to the right, we move along the line 2 steps down. In this case, as x increases, y decreases.

Exercise 1
 If a line has a slope $\frac{2}{-3}$. What does that tells you about the line?

For general function $y=f(x)$, for every step to the right, how many steps to go up/down? How do we measure that change in y ? If x changes by 1 , an estimate of the change in y is $\frac{d y}{d x}$.

Definition 2

The derivative of $y=f(x)$ can be interpreted as rate of change of y in term of x.

In this section, we have our variables are functions in t. so for example, we have
(1) $\frac{d x}{d t}$ is the rate change in x with respect to the time t. If $\frac{d x}{d t}=4$, it means that for every one unit in time, x increases by 4 units.
(2) $\frac{d r}{d t}$ is the rate change in r with respect to the time t. If $\frac{d r}{d t}=-2$ $\mathrm{cm} /$ second, it means that for every one second, r decreases 2 cm .

Example 3

If $y=x^{2}$ and $\frac{d x}{d t}=3$. What is $\frac{d y}{d t}$ when $x=-1$?
Solution:
Given: $\frac{d x}{d t}=3$ and $x=-1$.
Required: $\frac{d y}{d t}$.
Relation: $y=x^{2}$

$$
\begin{aligned}
& \frac{d y}{d t}=2 x \frac{d x}{d t} \\
& \frac{d y}{d t}=2(-1)(3)=-6
\end{aligned}
$$

Exercise 4
If $z=3 y^{3}$ and $\frac{d z}{d t}=10$. What is $\frac{d y}{d t}$ when $y=2$?

Example 5

Air is being pumped in a spherical balloon so that its volume increases at a rate of $500 \mathrm{~cm}^{3}$ /second. How fast is the radius of the balloon increases when the diameter is 50 cm ? (Note that the volume of the sphere is $V=\frac{4}{3} \pi r^{3}$.

Solution:
Given: $\frac{d V}{d t}=500$ and $D=50 \rightarrow r=\frac{D}{2}=25$.
Required: $\frac{d r}{d t}$.
Relation: $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
& 500=4 \pi(25)^{2} \frac{d r}{d t} \rightarrow \frac{d r}{d t}=\frac{500}{4 \pi(25)^{2}} \mathrm{~cm} / \text { second }
\end{aligned}
$$

Exercise 6

A circular disk is expanding at a rate $10 \mathrm{~cm}^{2} /$ second. Find the rate of change of the Diameter of the disk when the radius is 5 cm .

Example 7

Each side of a square is increasing at a rate of $6 \mathrm{~cm} /$ second. At what rate is the area of the square increases when the area of the square is $16 \mathrm{~cm}^{2}$.

Solution:
Given: $\frac{d x}{d t}=6$ and $A=16$.
Required: $\frac{d A}{d t}$.
Relation: $A=x^{2}$

$$
\begin{aligned}
& \frac{d A}{d t}=2 \times \frac{d x}{d t} \\
& \frac{d A}{d t}=2(4)(6)=\frac{d A}{d t}=24 \mathrm{~cm}^{2} / \text { second }
\end{aligned}
$$

Exercise 8

The length ℓ of a rectangle is decreasing at the rate of $2 \mathrm{~cm} /$ second while the width w is increasing at the rate of $2 \mathrm{~cm} /$ second when $\ell=12 \mathrm{~cm}$ and $w=5 \mathrm{~cm}$. Find the rate of change of
(1) Area
(2) Perimeter
(3) Length of the diagonal

Example 9

A ladder is 5 m long rests against a vertical wall. If the bottom of the ladder moves away at rate $0.5 \mathrm{~m} / \mathrm{second}$. How fast the top of the ladder slides down when the bottom of the ladder is 4 m from the wall.

Solution:
Given: $\frac{d x}{d t}=0.5$ and $\ell=5, x=4$.
Required: $\frac{d y}{d t}$.
Relation: $x^{2}+y^{2}=25$

$$
\begin{aligned}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t} & =2(4)(0.5)+2(3)\left(\frac{d y}{d t}\right)=0 \\
4+6 \frac{d y}{d t} & =0 \rightarrow \frac{d y}{d t}=\frac{-4}{6} \mathrm{~m} / \text { second }
\end{aligned}
$$

Example 10

An airplane is moving parallel to the ground on elevation 10 km with a rate of $6 \mathrm{~km} /$ minute. Find the rate of change for the angle where an observer observes the airplane when his angle is $\frac{\pi}{3}$.

Solution:
Given: $\frac{d x}{d t}=6$ and $y=10, \theta=\pi / 3$
Required: $\frac{d \theta}{d t}$.
Relation: $\tan \theta=\frac{10}{x}$ (hence $x=\frac{10}{\tan \left(\frac{\pi}{3}\right)}$)

$$
\begin{aligned}
\sec ^{2} \theta \cdot \frac{d \theta}{d t} & =\frac{-10}{x^{2}} \cdot \frac{d x}{d t} \\
2 \frac{d \theta}{d t} & =\frac{-10}{()^{2}} \cdot 6 \rightarrow \frac{d \theta}{d t}=\text { radian } / \text { minute }
\end{aligned}
$$

Exercise 11

The area of a triangle with sides a and b and contained angle θ is given by

$$
A=\frac{1}{2} a b \sin \theta
$$

If a increases at a rate of $2.5 \mathrm{~cm} / \mathrm{min}, b$ increases at a rate of $1.5 \mathrm{~cm} / \mathrm{min}$, and θ increases at a rate of $0.2 \mathrm{rad} / \mathrm{min}$. How fast is the area increasing when $a=2 \mathrm{~cm}, b=3 \mathrm{~cm}$, and $\theta=\frac{\pi}{3}$.

Example 12

A cube's surface area increases at a rate of $72 \mathrm{in}^{2} /$ second. At what rate the cube volume changes when the edge of the cube is 3 in ? (Note that the volume of the cube is $V=x^{3}$ and the suface area is $S=6 x^{2}$)

Solution:
Given: $\frac{d S}{d t}=72$ and $x=3$.
Required: $\frac{d V}{d t}$.
Relation: $V=x^{3}$

$$
\frac{d V}{d t}=\left(3 x^{2}\right) \frac{d x}{d t} \rightarrow \frac{d V}{d t}=27 \frac{d x}{d t}
$$

$$
\begin{aligned}
S=6 x^{2} \rightarrow \frac{d S}{d t} & =12 x \frac{d x}{d t} \rightarrow 72=36 \frac{d x}{d t} \rightarrow \frac{d x}{d t}=2 \\
\frac{d V}{d t} & =27(2)=54 \mathrm{in}^{3} / \text { second }
\end{aligned}
$$

