Section 3.11
 Linear Approximation and Differentials
 1.5 Lectures

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Table of Contents

In this section, we will study:
(1) Linear Approximation of a function.
(2) Differentials
(3) Newton's Method

1 - Linear Approximation

Idea: Given a function f, a number a, and a number x very close to a such that

$$
\begin{aligned}
& f(a), f^{\prime}(a) \text { can be easily computed } \\
& f(x) \text { is difficult to compute }
\end{aligned}
$$

Goal: We use $f(a), f^{\prime}(a)$ to approximate the value $f(x)$.

Example 1

Consider $f(x)=\sqrt{x}, a=16, x=16.01$. Then

$$
\begin{aligned}
& f(16)=\sqrt{16}=4 \text { easy } \\
& f^{\prime}(16)=\frac{1}{2 \sqrt{16}}=\frac{1}{8} \text { easy } \\
& f(16.01)=\sqrt{16.01}=? ? \text { difficulut }
\end{aligned}
$$

Linear Approximation

Given a function f, a number a, and a number x very close to a, we have

$$
\begin{aligned}
f(x) & \sim \text { Tangent line at a } \\
& \sim y_{1}+m\left(x-x_{1}\right) \\
& \sim f(a)+f^{\prime}(a)(x-a)
\end{aligned}
$$

Definition 2

The linear approximation of f at a is given by

$$
f(a)+f^{\prime}(a)(x-a)
$$

Example 3

Find the linear approximation of $f(x)=\sqrt{x}$ at $a=16$ and then use it to approximate $\sqrt{16.01}$.

Solution: We need to find $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then we have the linear approximation is given by

$$
\begin{aligned}
& f(x) \sim f(a)+f^{\prime}(a)(x-a) \\
& \sim \sqrt{16}+\frac{1}{2 \sqrt{16}}(x-16) \\
& \sim 4+\frac{1}{8}(x-16)=4+\frac{1}{8} x-2 \\
& \sim 2+\frac{1}{8} x \\
& \sqrt{16.01} \sim 2+\frac{1}{8}(16.01) \sim 4.00125
\end{aligned}
$$

Exercise 4
Compare the answer above with the one you would get if you use a

Example 5

Find the linear approximation of $f(x)=\sqrt[3]{8-x}$ at $a=0$.
Solution: We need to find $f^{\prime}(x)=\frac{-1}{3}(8-x)^{\frac{2}{3}}$. Then we have the linear approximation is given by

$$
\begin{aligned}
f(x)=\sqrt[3]{8-x} & \sim f(a)+f^{\prime}(a)(x-a) \\
& \sim \sqrt[3]{8-0}+\frac{-1}{3}(16-0)^{\frac{2}{3}}(x-0) \\
& \sim 2-\frac{4}{3}(x) \\
& \sim 2-\frac{4}{3} x
\end{aligned}
$$

Exercise 6

Find the linear approximation of $f(x)=\ln (x+1)$ at $a=0$.

Example 7

Use linear approximation to approximate the value of $\sin 0.03$.
Solution: Here we know that $x=0.03$, we need to find the function f and a value a near x that we can compute $f(a), f^{\prime}(a)$ easily.
Let $f(x)=\sin x\left(f^{\prime}(x)=\cos x\right)$ and $a=0$

$$
\begin{aligned}
f(x)=\sin x & \sim f(a)+f^{\prime}(a)(x-a) \\
& \sim \sin 0+\cos 0(x-0)=0+1(x) \\
\sin x & \sim x \\
\sin 0.03 & \sim 0.03
\end{aligned}
$$

Exercise 8

Compare the answer above with the one you would get if you use a calculator or a computer.

Exercise 9

Use linear approximation to approximate the value of $\ln 1.03$. (Hint: Use Exercise 6

Example 10

Given $f(1)=3$ and $f^{\prime}(x)=2 x+e^{x-1}$ for all x. Use linear approximation to estimate $f(0.9)$ and $g(1.01)$.

Exercise 11

Given $g(2)=-6$ and $g^{\prime}(x)=\sqrt{x^{2}+7}$ for all x. Use linear approximation to estimate $g(2.05)$ and $g(1.95)$.

2 - Differentials

Definition 12

Let $y=f(x)$, then the differential $d y$ is given by

$$
d y=f^{\prime}(x) d x
$$

Geometric Interpretation: What is $d x$ and $d y$?

Example 13

Find the differential of each of the following functions:
(1) $y=1+2 x^{3} \rightarrow d y=6 x^{2} d x$
(2) $x^{2}+4 y^{2}=5 \rightarrow 2 x d x+8 y d y=0 \rightarrow d y=\frac{-x}{4 y} d x$

Exercise 14

Find the differential of each of the following functions:
(1) $y=e^{x}+4$.
(2) $y=\cos x+\sin x$.
(3) $\tan y=e^{x}$

Example 15

Find $d x$ of each of the following functions:
(1) $u=3-4 x^{2} \rightarrow d u=-8 x d x \rightarrow d x=\frac{1}{-8 x} d u$.
(2) $u=\sin ^{-1} x \rightarrow d u=\frac{1}{\sqrt{1-x^{2}}} d x \rightarrow d x=\sqrt{1-x^{2}} d u$.

Exercise 16

Find $d x$ of each of the following functions:
(1) $u=a x+b$.
(2) $u=1-\cos ^{2} x$

Chain Rule, Second form

Example 17

Let $y=\sin x+e^{x}$ and $x=t^{2}+4 t$. Find $\frac{d y}{d t}$ at $t=1$?
Solution: Since $t=1$, we have $x=(1)^{2}+4(1)=5$.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{\left(\cos x+e^{x}\right) d x}{d t} \\
& =\frac{\left(\cos x+e^{x}\right)(2 t+4) d t}{d t} \\
& =\left(\cos x+e^{x}\right)(2 t+4) \\
\left.\frac{d y}{d t}\right|_{t=1} & =\left(\cos 5+e^{5}\right)(2(1)+4)
\end{aligned}
$$

Chain Rule, Second form

Exercise 18

Let $r=\frac{2}{q}+10 q$ and $q=7+\frac{12}{t}$. Find $\frac{d r}{d t}$ at $t=3$?
Solution: Since $t=3$, we have $q=11$.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{\left(-\frac{2}{q^{2}}+10\right) d q}{d t} \\
& =\frac{\left(-\frac{2}{q^{2}}+10\right)\left(-\frac{12}{t^{2}}\right) d t}{d t} \\
& =\left(-\frac{2}{q^{2}}+10\right)\left(-\frac{12}{t^{2}}\right) \\
\left.\frac{d y}{d t}\right|_{t=3} & =
\end{aligned}
$$

