Section 3.2
 Definition of the Derivative
 2 Lectures

Dr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Lines

Recall that the equation of the line is given by $f(x)=a x+b$.

1 - The slope of a line

(1) The slope of a line is a number that measures how sloppy the line is (how hard to climb the stairs!).
(1) Consider the two lines L_{1} and L_{2} (both of positive slope), but you can see that L_{1} has slope greater than L_{2}.
(2) Slope has a clear relation with the angle between the line and the x-axis. if the slope rises, then θ rises too!.

Slope $=m=\tan \theta$!

Finding the slope of a line

(1) From the equation of the line: Solve the equation for y, i.e., let y be alone. Then, you get

$$
y=m x+b
$$

and the slope is m.
(2) From the graph of the line: Choose any two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the line. Then,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Vertical change }}{\text { Horizontal change }}
$$

Special Case: The vertical line has no slope. Why?

Geometric Interpretation of the slope

Find the slope of the the blue line and the red line.

For the blue line, every 1 step to the right, we go 2 steps upward.
For the red line, every 2 step to the right, we go 3 steps downward.

2 - Equation of the line

To get the equation of a line, you need to find

- One point on the line $\left(x_{1}, y_{1}\right)$ and
- The slope of the line m.

Then, the equation of the line is

$$
y-y_{1}=m\left(x-x_{1}\right) \quad--8 \quad \text { "point-slope form" }
$$

Other forms:
General Linear Form $a x+b y+c=0$, where a, b, and c have no common factor.
Slope-Intercept Form $y=m x+b$, where m is the slope of the line and $(0, b)$ is the y-intercept.
Special Case: The equation of the vertical line is $x=x_{1}$.

3 - Parallel and Perpendicular Lines

Definition 1

- Two lines are parallel if

$$
m_{1}=m_{2}
$$

- Two lines are perpendicular if

$$
m_{1} m_{2}=-1 \text { or } m_{2}=\frac{-1}{m_{1}}
$$

Definition of the derivative

Recall: Derivative of a function $y=f(x)$ at any x is the slope of the tangent line at $(x, f(x))$.

$$
\text { slope }=m_{P Q}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(z)-f(x)}{z-x}
$$

If Q get closer and closer to P, the green line will get close and closer to the red line. The slope of the tangent line is given by

$$
m=\lim _{z \rightarrow a} \frac{f(z)-f(x)}{z-x}
$$

So the definition of the derivative at any x is

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} \quad---\quad " f \text { prime of } x "
$$

Equivalent Definition

Recall the definition of the derivative is given

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

An equivalent definition (which is more useful) is given by setting $z=x+h$, hence as $z \rightarrow x$, we have $h \rightarrow 0$ and we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Example 2

Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=10-7 x$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{10-7(x+h)-(10-7 x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{10-7 x-7 h-10+7 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{-7 h}{h} \\
& =\lim _{h \rightarrow 0}-7 \\
& =-7
\end{aligned}
$$

Exercise 3

(Homework) Using the definition of the limit, find the derivative of $f(x)=3$. Can you generalize it to any constant function $f(x)=c$?

Exercise 4
(Homework) Using the definition of the limit, find the derivative of $f(x)=x$?

Exercise 5

(Homework) Using the definition of the limit, find the derivative of $f(x)=x^{5}$? (Hint: Use the first definition of the limit)

Example 6

Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=x^{2}-8$.
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-8-\left(x^{2}-8\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-8-x^{2}+8}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x
\end{aligned}
$$

Example 7

Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\sqrt{x+1}$.
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-(\sqrt{x+1})}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1} \cdot \frac{(\sqrt{x+h+1}+\sqrt{x+1})}{(\sqrt{x+h+1}+\sqrt{x+1})}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x+h+1-x-1}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h+1}+\sqrt{x+1})}=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

Exercise 8

(Homework) Using the definition of the limit, find the derivative of $f(x)=\sqrt{x}$?

Example 9

Use the definition of the derivative to find $f^{\prime}(x)$ for $f(x)=\frac{6}{x}$.
Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{6}{x+h}-\left(\frac{6}{x}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{6 x-6(x+h)}{x(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-6 h}{h x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-6}{x(x+h)} \\
& =\frac{-6}{x^{2}}
\end{aligned}
$$

Example 10

Find the equation of the tangent line to the curve $f(x)=\frac{6}{x}$ at $x=3$.
Solution: To find the equation of the tangent line, we need to find the slope of the tangent line. From the previous example, we found that

$$
f^{\prime}(x)=\frac{-6}{x^{2}}
$$

The slope is the derivative at $x=3$, is hence

$$
m=f^{\prime}(3)=\frac{-6}{3^{2}}=-\frac{2}{3}
$$

The equation of the tangent line is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =\frac{-2}{3}(x-3) \\
2 x+3 y & =12
\end{aligned}
$$

Exercise 11

(Homework) Using the definition of the limit, find the derivative of $f(x)=\frac{1}{x}$?

Other Notation for the Derivatives

- $\frac{d y}{d x}$ "dee y, dee x " or "dee y by dee x ".
- $\frac{d}{d x}(f(x))$ "dee $f(x)$, dee x " or "dee $f(x)$ by dee x ".
- y^{\prime} " y prime".
- $\frac{d y}{d x} x_{x=a}$ or $y^{\prime}(a)$ means $f^{\prime}(a)$.

