Section 3.2 Definition of the Derivative 2 Lectures

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Recall that the equation of the line is given by f(x) = ax + b.

1 - The slope of a line

The slope of a line is a number that measures how sloppy the line is (how hard to climb the stairs!).

• Consider the two lines L_1 and L_2 (both of positive slope), but you can see that L_1 has slope greater than L_2 .

Slope has a clear relation with the angle between the line and the x-axis. if the slope rises, then θ rises too!.

Slope = $m = \tan \theta$!

Finding the slope of a line

From the equation of the line: Solve the equation for y, i.e., let y be alone. Then, you get

$$y = mx + b$$

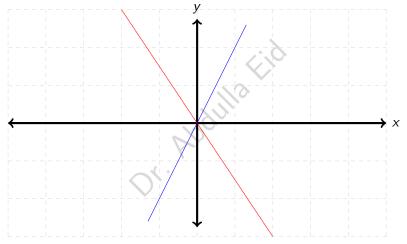
and the slope is m.

From the graph of the line: Choose any two points (x₁, y₁) and (x₂, y₂) on the line. Then,

$$m = rac{y_2 - y_1}{x_2 - x_1} = rac{ ext{Vertical change}}{ ext{Horizontal change}}$$

Special Case: The vertical line has no slope. Why?

Geometric Interpretation of the slope Find the slope of the the blue line and the red line.



For the blue line, every 1 step to the right, we go 2 steps upward. For the red line, every 2 step to the right, we go 3 steps downward.

2 - Equation of the line

To get the equation of a line, you need to find

- One point on the line (x_1, y_1) and
- The slope of the line *m*.

Then, the equation of the line is

 $y - y_1 = m(x - x_1)$

"point-slope form"

Other forms:

General Linear Form ax + by + c = 0, where *a*, *b*, and *c* have **no** common factor.

Slope-Intercept Form y = mx + b, where *m* is the slope of the line and (0, b) is the *y*-intercept.

Special Case: The equation of the vertical line is $x = x_1$.

3 - Parallel and Perpendicular Lines

Definition 1

• Two lines are parallel if

$$m_1 = m_2$$

• Two lines are perpendicular if

$$m_1m_2 = -1$$
 or $m_2 = \frac{-1}{m_1}$

Definition of the derivative

Recall: Derivative of a function y = f(x) at any x is the slope of the tangent line at (x, f(x)).

slope =
$$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(z) - f(x)}{z - x}$$

If Q get closer and closer to P, the green line will get close and closer to the red line. The slope of the tangent line is given by

$$m = \lim_{z \to a} \frac{f(z) - f(x)}{z - x}$$

So the definition of the derivative at any x is

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} \quad --- \quad \text{``f prime of } x \text{''}$$

Equivalent Definition

Recall the definition of the derivative is given

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

An equivalent definition (which is more *useful*) is given by setting z = x + h, hence as $z \to x$, we have $h \to 0$ and we get

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Use the definition of the derivative to find f'(x) for f(x) = 10 - 7x.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{10 - 7(x+h) - (10 - 7x)}{h}$$

=
$$\lim_{h \to 0} \frac{10 - 7x - 7h - 10 + 7x}{h}$$

=
$$\lim_{h \to 0} \frac{-7h}{h}$$

=
$$\lim_{h \to 0} -7$$

=
$$-7$$

f

(Homework) Using the definition of the limit, find the derivative of f(x) = 3. Can you generalize it to any constant function f(x) = c?

(Homework) Using the definition of the limit, find the derivative of f(x) = x?

(Homework) Using the definition of the limit, find the derivative of $f(x) = x^5$? (Hint: Use the first definition of the limit)

Use the definition of the derivative to find f'(x) for $f(x) = x^2 - 8$.

Solution:

$$I'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{(x+h)^2 - 8 - (x^2 - 8)}{h}$
= $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 8 - x^2 + 8}{h}$
= $\lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} \frac{h(2x+h)}{h}$
= $\lim_{h \to 0} 2x + h$
= $2x$

f

Use the definition of the derivative to find f'(x) for $f(x) = \sqrt{x+1}$.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

= $\lim_{h \to 0} \frac{\sqrt{x+h+1} - (\sqrt{x+1})}{h}$
= $\lim_{h \to 0} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h} \cdot \frac{(\sqrt{x+h+1} + \sqrt{x+1})}{(\sqrt{x+h+1} + \sqrt{x+1})}$
= $\lim_{h \to 0} \frac{x+h+1 - x - 1}{h(\sqrt{x+h+1} + \sqrt{x+1})}$
= $\lim_{h \to 0} \frac{h}{h(\sqrt{x+h+1} + \sqrt{x+1})}$
= $\lim_{h \to 0} \frac{1}{(\sqrt{x+h+1} + \sqrt{x+1})} = \frac{1}{2\sqrt{x+1}}$

(Homework) Using the definition of the limit, find the derivative of $f(x) = \sqrt{x}$?

Use the definition of the derivative to find f'(x) for $f(x) = \frac{6}{x}$.

Solution:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{6}{x+h} - (\frac{6}{x})}{h}$$
$$= \lim_{h \to 0} \frac{\frac{6x - 6(x+h)}{x(x+h)}}{h}$$
$$= \lim_{h \to 0} \frac{-6h}{hx(x+h)}$$
$$= \lim_{h \to 0} \frac{-6}{x(x+h)}$$
$$= \frac{-6}{x^2}$$

Dr. Abdulla Eid (University of Bahrain)

Find the equation of the tangent line to the curve $f(x) = \frac{6}{x}$ at x = 3.

Solution: To find the equation of the tangent line, we need to find the slope of the tangent line. From the previous example, we found that

$$f'(x) = \frac{-6}{x^2}$$

The slope is the derivative at x = 3, is hence

1

$$n = f'(3) = \frac{-6}{3^2} = -\frac{2}{3}$$

The equation of the tangent line is

$$y - y_1 = m(x - x_1)$$

 $y - 2 = \frac{-2}{3}(x - 3)$
 $2x + 3y = 12$

(Homework) Using the definition of the limit, find the derivative of $f(x) = \frac{1}{x}$?

Other Notation for the Derivatives

- $\frac{dy}{dx}$ "dee y, dee x" or "dee y by dee x".
- $\frac{dx}{dx}(f(x))$ "dee f(x), dee x" or "dee f(x) by dee x".
- y' "y prime".
 dy/dx x=a or y'(a) means f'(a).