Section 3.2
 Definition of the Derivative
 2 Lectures

Dr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Nondifferentiable function with a corner

Example 1

Show that the function

$$
f(x)=|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}
$$

is not differentiable at $x=0$.
Solution: We will try to find the derivative of the function at $x=0$,

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h} \\
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{|h|}{h} \text { which is does not exist by Example ?? }
\end{aligned}
$$

So the function $f(x)=|x|$ is not differentiable at $x=0$ (since we have a corner! at $x=0$).

Nondifferentiable function with a cusp

Example 2

Show that the function $f(x)=\sqrt{|x|}$ is not differentiable at $x=0$.
Solution: We will try to find the derivative of the function at $x=0$,

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{\sqrt{|h|}-0}{h}
\end{aligned}
$$

We need to find the left and the right limit.

$$
\begin{aligned}
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sqrt{|h|}-0}{h} \\
& \begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{\sqrt{|h|}-0}{h} & =\lim _{h \rightarrow 0^{+}} \frac{\sqrt{h}-0}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{1}{\sqrt{h}} \\
& \lim _{h \rightarrow 0^{-}} \frac{\sqrt{|h|}-0}{h}
\end{aligned}=\lim _{h \rightarrow 0^{-}} \frac{\sqrt{-h}-0}{h} \\
&=\lim _{h \rightarrow 0^{-}} \frac{1}{\sqrt{-h}} \\
&
\end{aligned}
$$

so we have

$$
f^{\prime}(0)=\infty
$$

i.e., the slope is infinity so the function $f(x)=\sqrt{|x|}$ is not differentiable at $x=0$ (since we have a cusp! at $x=0$).

Nondifferentiable everywhere function

Example 3

Look at the function that results from everyday trading in stock, or FX, you will see that at every point we have either a cusp or corner. Example, look at www.finance. yahoo.com

Differentiablity \rightarrow Continuity

Theorem 4
If f is differentiable at $x=a$, then f is continuous at $x=a$.
Solution: Assume f is differentiable at $x=a$, i.e., the derivative $f^{\prime}(a)$ (as a limit exist). We want to show that f is continuous at $x=$ a,i.e., $\lim _{x \rightarrow a} f(x)=f(a)$.

$$
\begin{aligned}
f(x)-f(a) & =\frac{f(x)-f(a)}{(x-a)} \cdot(x-a) \\
\lim _{x \rightarrow a} f(x)-f(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{(x-a)} \cdot(x-a) \\
\lim _{x \rightarrow a} f(x)-f(a) & =f^{\prime}(a) \cdot 0=0 \\
\lim _{x \rightarrow a} f(x) & =f(a)
\end{aligned}
$$

Therefore, the function is continuous at $x=a$.

