Section 3.3
 Constant Multiple and sum rule 1 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Constant Factor Rule

Theorem 1

$$
(c f(x))^{\prime}=c f^{\prime}(x)
$$

Let $F(x)=c f(x)$.

$$
\begin{aligned}
\frac{d}{d x}(c \cdot f(x))=F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c \cdot f(x+h)-(c \cdot f(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{c \cdot(f(x+h)-f(x))}{h} \\
& =c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =c f^{\prime}(x)
\end{aligned}
$$

Example 2

(1) $\frac{d}{d x}\left(5 x^{2}\right)=5 \frac{d}{d x}\left(x^{2}\right)=5 \cdot 2 x=10 x$.
(2) $\frac{d}{d x}\left(\frac{8}{x^{5}}\right)=8 \frac{d}{d x}\left(\frac{1}{x^{5}}\right)=8 \frac{d}{d x}\left(x^{-5}\right)=-40 x^{-6}$.
(3) $\frac{d}{d x}\left(7 x^{3} \sqrt[4]{x}\right)=7 \frac{d}{d x}\left(x^{3} x^{\frac{1}{4}}\right)=7 \frac{d}{d x}\left(x^{\frac{13}{4}}\right)=-\frac{7 \cdot 13}{4} x^{-\frac{9}{4}}$.

Sum Rule

Theorem 3

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
$$

Let $F(x)=f(x)+g(x)$.

$$
\begin{aligned}
\frac{d}{d x}(f(x)+g(x))=F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h} \\
& =\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))
\end{aligned}
$$

Example 4

Find y^{\prime} and simplify:
(1) $y=\frac{x^{3}}{3}-\frac{2}{x^{2}}$.
(2) $y=x^{2}(4 x+6)$.
(3) $y=\frac{x^{8}+x^{5}}{x^{2}}$.
(9) $y=\sqrt{2}+e^{\sqrt{2}}+\ln \sqrt{2}$.
(5) $x^{3}-\ln 2$.

Solution:
(1) $y=\frac{1}{3} x^{3}-2 x^{-2} \rightarrow y^{\prime}=\frac{3}{3} x^{2}+4 x^{-3}=x^{2}+\frac{4}{x^{3}}$.
(2) $y=4 x^{3}+6 x^{2} \rightarrow y^{\prime}=12 x^{2}+12 x$.
(3) $y=x^{6}+x^{3} \rightarrow y^{\prime}=6 x^{5}+3 x^{2}$.
(9) $y^{\prime}=0$. Since all functions are constant functions.
(3) $y^{\prime}=3 x^{2}$.

Example 5

Find all the points on the curve $y=x^{3}-3 x+6$ where the slope of the tangent line is 9 .

Solution: Recall that the slope of the tangent line is the derivative, we need to find the derivative and make it equal to 9 .

Slope of the tangent line $=9$

$$
\begin{aligned}
f^{\prime}(x) & =9 \\
3 x^{2}-3 & =9 \\
3 x^{2}-12 & =0 \\
x=2 & \text { or } x=-2
\end{aligned}
$$

The points are then

$$
(2,8) \text { and }(-2,4)
$$

Example 6

Find an equation of the tangent line to the curve $f(x)=5-\sqrt[4]{x}$ at $x=1$.
Solution: Recall that an equation of a line at $\left(x_{1}, y_{1}\right)$ and slope m is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
m=\text { Slope of the tangent line }=m=f^{\prime}(1)
$$

$$
\begin{aligned}
f(x)=5-x^{\frac{1}{4}} \rightarrow f^{\prime}(x) & =-\frac{1}{4} x^{-\frac{5}{4}} \\
m=f^{\prime}(1) & =\frac{-1}{4}
\end{aligned}
$$

Now $x_{1}=1$ and $y_{1}=f(1)=4$. Hence the equation of the tangent line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{-1}{4}(x-1) \\
&-4 y+16=x-1 \\
&-\Delta_{1}-\frac{2}{\text { Diferentiation Rules }}
\end{aligned}
$$

Exercise 7

Find an equation of the tangent line to the curve $f(x)=\frac{\sqrt{x}\left(2-x^{2}\right)}{x}$ at $x=4$.

