Section 3.3
 Product and Quotient rules 1 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Motivation

Goal: We want to derive rules to find the derivative of product $f(x) g(x)$ and quotient $\frac{f(x)}{g(x)}$ of two functions.

Example 1

We want to find (in a general way) the derivative of the functions:

- $f(x)=(3 x+1)(5 x+2)$.
- $f(x)=x e^{x}$.
- $f(x)=\frac{3 x+1}{x^{3}+2 x+1}$.
- $f(x)=\frac{x+1}{e^{x}+6 x-3}$.

The Product Rule (Leibniz Rule)

Theorem 2

$$
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) .
$$

$(f(x) g(x))^{\prime}=($ derivative of first $)($ second $)+($ first $)($ derivative of second $)$

Before we prove this theorem, recall that the definition of the derivative is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \text { and } g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

Proof: Let $F(x)=f(x) g(x)$. Then,

$$
\begin{aligned}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
\end{aligned}
$$

We will use a "trick" by adding and subtracting $f(x) g(x+h)$ in the middle of the numerator.

$$
\begin{aligned}
F^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] g(x+h)+f(x)[g(x+h)-g(x)]}{h}
\end{aligned}
$$

Continue...

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] g(x+h)+f(x)[g(x+h)-g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] g(x+h)}{h}+\frac{f(x)[g(x+h)-g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{[f(x+h)-f(x)] g(x+h)}{h}+\lim _{h \rightarrow 0} \frac{f(x)[g(x+h)-g(x)]}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \lim _{h \rightarrow 0} g(x+h)+\lim _{h \rightarrow 0} f(x) \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{aligned}
$$

Example 3

Find the derivative of each of the following:
(1) $F(x)=\left(x^{2}+5 x-6\right)\left(6 x^{2}-5 x+6\right)$
(2) $F(x)=2(\sqrt{x}+5 x-3)(\sqrt[4]{x}-4 \sqrt{x})$

Solution: (1)

$$
\begin{aligned}
F^{\prime}(x) & =(\text { derivative of first })(\text { second })+(\text { first })(\text { derivative of second }) \\
& =(2 x+5)\left(6 x^{2}-5 x+6\right)+\left(x^{2}+5 x-6\right)(12 x-5)
\end{aligned}
$$

(2)

$$
\begin{aligned}
F^{\prime}(x) & =(\text { derivative of first })(\text { second })+(\text { first }) \text { (derivative of second }) \\
& =2\left[\left(\frac{1}{2 \sqrt{x}}+5\right)(\sqrt[4]{x}-4 \sqrt{x})+(\sqrt{x}+5 x-3)\left(\frac{1}{4} x^{\frac{-3}{4}}-\frac{4}{2 \sqrt{x}}\right)\right]
\end{aligned}
$$

Product rule for 3 functions or more

$$
\begin{gathered}
(f g)^{\prime}=f^{\prime} g+f g^{\prime} \\
(f g h)^{\prime}=f^{\prime} g h+f g^{\prime} h+f g h^{\prime}
\end{gathered}
$$

Example 4

Find the derivative of each of the following:
(1) $F(x)=(x-1)(x-2)\left(x^{2}-4\right)$

Solution:

$$
F^{\prime}(x)=(1)(x-2)\left(x^{2}-4\right)+(x-1)(1)\left(x^{2}-4\right)+(x-1)(x-2)(2 x)
$$

The Quotient Rule

Theorem 5

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

(denominator) (derivative of numerator) $-($ numerator $)($ derivative of denomir (denominator) ${ }^{2}$

To prove this theorem, we will use the product rule.

Proof: Let $F(x)=\frac{f(x)}{g(x)}$. We want to find $F^{\prime}(x)$. For that we apply the product rule to

$$
F(x) g(x)=f(x)
$$

$($ derivative of first $)($ second $)+($ first $)($ derivative of second $)=f^{\prime}(x)$

$$
\begin{aligned}
F^{\prime}(x) g(x)+F(x) g^{\prime}(x) & =f^{\prime}(x) \\
F^{\prime}(x) g(x) & =f^{\prime}(x)-F(x) g^{\prime}(x) \\
F^{\prime}(x) & =\frac{f^{\prime}(x)-F(x) g^{\prime}(x)}{g(x)} \\
F^{\prime}(x) & =\frac{f^{\prime}(x)-\frac{f(x)}{g(x)} g^{\prime}(x)}{g(x)} \\
F^{\prime}(x) & =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

Example 6

Find the derivative of each of the following:
(1) $F(x)=\frac{2}{5 x+1}$
(2) $F(x)=\frac{1-x}{1-x^{3}}$

Solution: (1)

$$
\begin{aligned}
F^{\prime}(x) & =\frac{(\text { denominator })(\text { derivative of numerator })-(\text { numerator })(\text { derivative of }}{(\text { denominator })^{2}} \\
& =\frac{(5 x+1)(0)-(2)(5)}{(5 x+1)^{2}} \\
& =\frac{-10}{(5 x+1)^{2}}
\end{aligned}
$$

Continue...

Recall we want to find the derivative of $F(x)=\frac{1-x}{1-x^{3}}$.
$F^{\prime}(x)=\frac{(\text { denominator })(\text { derivative of numerator })-(\text { numerator })(\text { derivative o }}{(\text { denominator })^{2}}$

$$
\begin{aligned}
& =\frac{\left(1-x^{3}\right)(-1)-(1-x)\left(-3 x^{2}\right)}{\left(1-x^{3}\right)^{2}} \\
& =\frac{-1+x^{3}+3 x^{2}-3 x^{3}}{\left(1-x^{3}\right)^{2}} \\
& =\frac{-1+3 x^{2}-2 x^{3}}{\left(1-x^{3}\right)^{2}}
\end{aligned}
$$

Exercise 7

Find the derivative of the following functions:
(1) $f(x)=\frac{e^{x}}{x}$
(2) $f(x)=\frac{a x+b}{c x+d}$

