Section 3.3
 Differentiability of case-defined functions and higher derivative 1 Lecture

Dr. Abdulla Eid

College of Science
MATHS 101: Calculus I

1 - Derivative of case-defined functions

Example 1

Show that the function

$$
f(x)= \begin{cases}3 x^{2}+2 x+1, & x>0 \\ e^{2 x}, & x \leq 0\end{cases}
$$

is differentiable at $x=0$.
Solution: We find

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)-1}{h}
$$

We need to compute the left and right limit.

$$
\lim _{h \rightarrow 0^{+}} \frac{f(h)-1}{h}=f\left(0^{+}\right)=2 \quad \lim _{h \rightarrow 0^{-}} \frac{f(h)-1}{h}=f^{\prime}\left(0^{-}\right)=2
$$

so we have

$$
f^{\prime}(0)=2
$$

The graph of the function

Exercise 2

Show that the function

$$
f(x)= \begin{cases}-x, & x<0 \\ \frac{x^{2}}{x+1}, & x \geq 0\end{cases}
$$

is differentiable at $x=0$.
Solution: We find

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)-1}{h}
$$

We need to compute the left and right limit.

$$
f\left(0^{-}\right)=-1 \quad \begin{array}{ll}
f_{2}(x) & =\frac{(x+1)(2 x)-x^{2}(1)}{(x+1)^{2}} \\
f\left(0^{+}\right) & =0
\end{array}
$$

so we have

$$
f^{\prime}(0)=\text { Does not exist }
$$

Example 3

For which value(s) is the function defined by

$$
f(x)= \begin{cases}a x+b, & x<0 \\ x-x^{2}, & x \geq 0\end{cases}
$$

differentiable at $x=0$?
Solution: We find

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}
$$

We need to compute the left and right limit and we make them equal.

$$
f\left(0^{-}\right)=a
$$

$$
f\left(0^{+}\right)=1
$$

so we have $a=1$. Now since the function is continuous, then we must have the right limit equal the left limit and so we have

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x) \rightarrow b=0
$$

Exercise 4

For which value(s) is the function defined by

$$
f(x)= \begin{cases}a x+b, & x<1 \\ x-x^{6}, & x \geq 1\end{cases}
$$

differentiable at $x=1$?

2 - Higher derivatives

Let $y=f(x)$

First Derivative	y^{\prime}	$\frac{d y}{d x}$	$f^{\prime}(x)$	$\frac{d}{d x}(f(x)$
Second Derivative	$y^{\prime \prime}$	$\frac{d^{2} y}{d x^{2}}$	$f^{\prime \prime}(x)$	$\frac{d^{2}}{d x^{2}}(f(x)$
Third Derivative	$y^{\prime \prime \prime}$	$\frac{d^{2} y}{d x^{3}}$	$f^{\prime \prime \prime}(x)$	$\frac{d^{3}}{d x^{3}}(f(x)$
Fourth Derivative	$y^{(4)}$	$\frac{d^{2} y}{d x^{4}}$	$f^{(4)}(x)$	$\frac{d^{4}}{d x^{4}}(f(x)$
nth Derivative	$y^{(n)}$	$\frac{d^{4} y}{d x^{n}}$	$f^{(n)}(x)$	$\frac{d^{n}}{d x^{n}}(f(x)$

Example 5
Find $\frac{d^{4} y}{d x^{4}}$ for

$$
y=e^{3 x}+x^{3}+\sqrt[3]{333}
$$

Solution:

$$
\begin{aligned}
y^{\prime} & =3 e^{3 x}+3 x^{2} \\
y^{\prime \prime} & =9 e^{3 x}+6 x \\
y^{\prime \prime \prime} & =27 e^{3 x}+6 \\
& =81 e^{3 x}
\end{aligned}
$$

Exercise 6

Find $\frac{d^{3} y}{d x^{3}}$ for

$$
y=x^{4} e^{x}
$$

Solution:

$$
\begin{aligned}
y^{\prime} & =4 x^{3} e^{x}+x^{4} e^{x} \\
y^{\prime \prime} & =\left(12 x^{2} e^{x}+4 x^{3} e^{x}\right)+\left(4 x^{3} e^{x}+x^{4} e^{x}\right) \\
& =12 x^{2} e^{x}+8 x^{3} e^{x}+x^{4} e^{x} \\
y^{\prime \prime \prime} & =\left(24 x e^{x}+12 x^{2} e^{x}\right)+\left(24 x^{2} e^{x}+8 x^{3} e^{x}\right)+\left(4 x^{3} e^{x}+x^{4} e^{x}\right) \\
& =24 x e^{x}+36 x^{2} e^{x}+12 x^{3} e^{x}+x^{4} e^{x}
\end{aligned}
$$

