Section 3.6
 The chain rule 1 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Motivation

Goal: We want to derive rules to find the derivative of composite of two functions $f(g(x))$

Example 1

We want to find (in a general way) the derivative of the functions (Note the inner and the outer functions)

- $f(x)=\left(3 x^{2}+5 x+1\right)^{3}=(\underbrace{3 x^{2}+5 x+1}_{\text {inner }})^{\frac{3}{\text { outer }}}$
$\frac{\frac{-4}{3}}{3}$
- $f(x)=\left(2 x^{3}-8 x\right)^{\frac{-4}{3}}=(\underbrace{2 x^{3}-8 x}_{\text {inner }})^{\text {outer }}$
- $f(x)=\frac{4}{x^{2}+5}=4\left(x^{2}+5\right)^{-1}=(\underbrace{x^{2}+5}_{\text {inner }})^{-1}$

The Chain Rule

Theorem 2

$$
\begin{gathered}
(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
(f(g(x)))^{\prime}=\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner })
\end{gathered}
$$

Example 3

Find the derivative of each of the following:
(1) $f(x)=\left(3 x^{2}+5 x+1\right)^{3}$

Solution: We write the inner function in blue and the outer function in red and we apply the chain rule.
(1) $f(x)=\left(3 x^{2}+5 x+1\right)^{3}=\left(3 x^{2}+5 x+1\right)^{3}$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner }) \\
& =3\left(3 x^{2}+5 x+1\right)^{2} \cdot(6 x+5)
\end{aligned}
$$

Exercise 4

Find the derivative of each of the following $f(x)=\left(x^{2}+\tan x+e^{x}+5\right)^{3}$

Example 5

Find the derivative of each of the following: $f(x)=\sin \left(x^{3}\right)$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\sin \left(x^{3}\right)=\sin \left(x^{3}\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot(\text { derivative of inner) } \\
& =\cos \left(x^{3}\right) \cdot\left(3 x^{2}\right)
\end{aligned}
$$

Exercise 6

Find the derivative of each of the following: $f(x)=\sin ^{3} x$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\sin ^{3} x=(\sin x)^{3}$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner }) \\
& =3(\sin x)^{2} \cdot(\cos x)
\end{aligned}
$$

Example 7

Find the derivative of each of the following:
$f(x)=\sqrt[4]{x^{2}+\tan x}$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\left(x^{2}+\tan x\right)^{\frac{1}{4}}=\left(x^{2}+\tan x\right)^{\frac{1}{4}}$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot(\text { derivative of inner }) \\
& =\frac{1}{4}\left(x^{2}+\tan x\right)^{\frac{-3}{4}} \cdot\left(2 x+\sec ^{2} x\right)
\end{aligned}
$$

Exercise 8

Find the derivative of each of the following: $f(x)=\sqrt{x^{3}+e^{x}-\sec x}$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule.

$$
f(x)=\sqrt{x^{3}+e^{x}-\sec x}=\sqrt{x^{3}+e^{x}-\sec x}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot(\text { derivative of inner }) \\
& =\frac{1}{2 \sqrt{x^{3}+e^{x}-\sec x}} \cdot\left(3 x^{2}+e^{x}-\sec x \tan x\right)
\end{aligned}
$$

Example 9

Find the derivative of each of the following: $f(x)=e^{x^{2}+2 x}$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=e^{x^{2}+2 x}=e^{x^{2}+2 x}$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot(\text { derivative of inner }) \\
& =e^{x^{2}+2 x} \cdot(2 x+2)
\end{aligned}
$$

Exercise 10

Find the derivative of each of the following: $f(x)=(x \sin x)^{5}$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=(x \sin x)^{5}=(x \sin x)^{5}$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot \text { (derivative of inner) } \\
& =5(x \sin x)^{4} \cdot(\sin x+x \cos x)
\end{aligned}
$$

Example 11

Find the derivative of each of the following: $f(x)=\tan \left(\frac{x+1}{x-1}\right)$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\tan \left(\frac{x+1}{x-1}\right)=\tan \left(\frac{x+1}{x-1}\right)$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer (inner) } \cdot(\text { derivative of inner) } \\
& =\sec ^{2}\left(\frac{x+1}{x-1}\right) \cdot\left(\frac{x+1}{x-1}\right)^{\prime} \\
& =\sec ^{2}\left(\frac{x+1}{x-1}\right) \cdot\left(\frac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}\right) \\
& =\sec ^{2}\left(\frac{x+1}{x-1}\right) \cdot\left(\frac{-2}{(x-1)^{2}}\right)
\end{aligned}
$$

Exercise 12

Find the derivative of each of the following: $f(x)=\sqrt{x+\sqrt{x}}$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule.

$$
f(x)=\sqrt{x+\sqrt{x}}=\sqrt{x+\sqrt{x}}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner }) \\
& =\frac{1}{2 \sqrt{x+\sqrt{x}}} \cdot\left(1+\frac{1}{2 \sqrt{x}}\right)
\end{aligned}
$$

Example 13

Find the derivative of each of the following: $f(x)=\sin (\sin (\sin x))$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\sin (\sin (\sin x))=\sin (\sin (\sin x))$.

$$
\begin{aligned}
f^{\prime}(x) & =\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner }) \\
& =\cos (\sin (\sin x)) \cdot(\sin (\sin x))^{\prime} \\
& =\cos (\sin (\sin x)) \cdot(\sin (\sin x))^{\prime} \\
& =\cos (\sin (\sin x)) \cdot(\cos (\sin x)) \cdot(\cos x)
\end{aligned}
$$

Exercise 14

Find the derivative of each of the following: $f(x)=\sec ^{2}\left(\frac{1}{x}\right)$
Solution: We write the inner function in blue and the outer function in red and we apply the chain rule. $f(x)=\sec ^{2}\left(\frac{1}{x}\right)=\sec ^{2}\left(\frac{1}{x}\right)$.

$$
=2 \sec \left(\frac{1}{x}\right) \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right) \cdot\left(\frac{-1}{x^{2}}\right)
$$

Example 15

Find the derivative of each of the following: $f(x)=e^{\sin x}+\sin \left(e^{x}\right)$

Solution:

$$
f^{\prime}(x)=e^{\sin x} \cdot \cos x+\cos \left(e^{x}\right) \cdot e^{x}
$$

Exercise 16

Find the derivative of $f(x)=\tan ^{2}\left(\sin ^{3} x\right)$

Chain Rule and Quotient Rule

Example 17

Find $\frac{d y}{d x}$ for

$$
y=\frac{e^{x^{2}}}{5-x^{2}}
$$

Solution: We apply the quotient rule.

$$
y^{\prime}=\frac{(\text { denominator })(\text { derivative of numerator })-(\text { numerator })(\text { derivative of de }}{(\text { denominator })^{2}}
$$

$$
y^{\prime}=\frac{\left(5-x^{2}\right) e^{x^{2}}(2 x)-e^{x^{2}}(-2 x)}{\left(5-x^{2}\right)^{2}}
$$

$$
=\frac{12 x e^{x^{2}}-2 x^{3} e^{x^{2}}}{\left(5-x^{2}\right)^{2}}
$$

Exercise 18
Find $\frac{d^{3} y}{d x^{3}}$ for

$$
y=\frac{1}{1+2 x}
$$

Solution:

$$
\begin{aligned}
y & =\frac{1}{1+2 x} \\
& =(1+2 x)^{-1} \\
y^{\prime} & =-1(1+2 x)^{-2}(2)=-2(1+2 x)^{-2} \\
y^{\prime \prime} & =-2 \cdot-2(1+2 x)^{-3}(2)=8(1+2 x)^{-3} \\
y^{\prime \prime \prime} & =8 \cdot-3(1+2 x)^{-4}(2)=-48(1+2 x)^{-4} \\
& =\frac{-48}{(1+2 x)^{4}}
\end{aligned}
$$

Example 19

Find an equation of the tangent and normal lines to the curve $y=\left(x^{2}+1\right)^{3}(2 x-3)^{2}$ at $x=1$.

Solution: Recall that the slope of the tangent line is the derivative. so we have to use the product rule

$$
\begin{aligned}
y^{\prime}(x) & =(\text { derivative of first })(\text { second })+(\text { first }) \text { (derivative of second) } \\
y^{\prime}(x) & =3\left(x^{2}+1\right)^{2}(2 x)(2 x-3)^{2}+\left(x^{2}+1\right)^{3}(2(2 x-3)(2)) \\
m & =y^{\prime}(1)=-8
\end{aligned}
$$

Now $x_{1}=1$ and $y_{1}=y(1)=8$. Hence the equation of the tangent line is

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \rightarrow y-8=-8(x-1) \\
& y+8 x=16
\end{aligned}
$$

The equation of the normal line is

$$
y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right) \rightarrow y-8=\frac{1}{8}(x-1) \rightarrow 8 y-x=65
$$

Example 20

Find an equation of the tangent and normal lines to the curve $y=\sin (\sin x)$ at $x=\pi$.

Solution: Recall that the slope of the tangent line is the derivative. so we have to use the product rule

$$
\begin{aligned}
y^{\prime}(x) & =\cos (\sin x) \cdot(\cos x) \\
m & =y^{\prime}(\pi)=\cos (\sin \pi) \cdot(\cos \pi)=-1
\end{aligned}
$$

Now $x_{1}=\pi$ and $y_{1}=y(\pi)=0$. Hence the equation of the tangent line is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \rightarrow y-0=-(x-\pi) \\
y+x & =\pi
\end{aligned}
$$

The equation of the normal line is

$$
\begin{aligned}
y-y_{1} & =\frac{-1}{m}\left(x-x_{1}\right) \rightarrow y-0=\frac{-1}{-1}(x-\pi) \\
y-x & =-\pi
\end{aligned}
$$

Exercise 21

Find an equation of the tangent and normal lines of the curve $y=\sin x+\sin ^{2} x$ at $x=0$.

Example 22

Given the following table

x	f	f^{\prime}	g	g^{\prime}
0	1	5	1	$\frac{1}{3}$
1	3	$\frac{-1}{3}$	-4	$\frac{-8}{3}$

$$
\begin{aligned}
(f \circ g)^{\prime}(0) & =f^{\prime}(g(0)) \cdot g^{\prime}(0)=f^{\prime}(1) \cdot \frac{1}{3}=\frac{-1}{9} \\
(g \circ f)^{\prime}(0) & =g^{\prime}(f(0)) \cdot f^{\prime}(0)=g^{\prime}(1) \cdot 5=\frac{-40}{3} \\
(g f)^{\prime}(0) & =g^{\prime}(0) f(0)+g(0) f^{\prime}(0)=\frac{1}{3}(1)+1(5)=\frac{16}{3} \\
(f g)^{\prime}(0) & =f^{\prime}(0) g(0)+f(0) g^{\prime}(0)=(5)(1)+1\left(\frac{1}{3}\right)=\frac{16}{3}
\end{aligned}
$$

