Section 3.8 Derivative of the inverse function and logarithms 3 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Topics

- 1 Inverse Functions (1 lecture).
- 2 Logarithms.
- Oerivative of the inverse function (1 lecture).
- Logarithmic differentiation (1 lecture).

1 - Inverse functions (pre-calculus)

Definition 1

Let f be a function. The **inverse** function, denoted by f^{-1} of f is a *new* function such that

$$\underbrace{f}_{\text{outer inner}}(\underbrace{f^{-1}}_{\text{inner}}(x)) = x \text{ and } \underbrace{f^{-1}}_{\text{outer inner}}(\underbrace{f}_{\text{inner}}(x)) = x$$

(The function and its inverse cancel each other).

- (a) Let f(x) = x + 5, then $f^{-1}(x) = x 5$ (we will see how to find the inverse shortly). Note that:
 - $f(f^{-1}(x)) = f(x-5) = x-5+5 = x$.
 - $f^{-1}(f(x)) = f^{-1}(x+5) = x+5-5 = x$.
- (b) Let $f(x) = x^2 (x \ge 0)$, then $f^{-1}(x) = \sqrt{x}$ because:
 - $f(f^{-1}(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$.
 - $f^{-1}(f(x)) = f^{-1}(x^2) = \sqrt{x^2} = |x| = x$.

Question: Does every function have an inverse? How to tell when a function has an inverse?

Answer: No, we use the **horizontal line test** if we have the graph of the function.

To find the inverse function

To find the inverse function

Algebraically

Step 1: Write y = f(x).

Step 2: Switch x and y to get x = f(y).

Step 3: Solve for y, i.e., isolate y alone to get $y = f^{-1}(x)$.

Geometrically

Step 1: Reflect the graph of y = f(x) on the x-axis.

Step 2: rotate the resulting graph by 90° counterclockwise to get the graph of $f^{-1}(x)$.

Find the inverse of g(x) = 5x - 3.

Solution:

- Step 1: Write $y = g(x) \rightarrow y = 5x 3$.
- Step 2: Exchange x and y in step $1 \rightarrow x = 5y 3$.
- Step 3: Solve the equation in step 1 for y

$$x = 5y - 3$$
$$x + 3 = 5y$$
$$\frac{x + 3}{5} = y$$

Hence we have

$$g^{-1}(x) = \frac{x+3}{5}$$

Exercise 4

Find the inverse function of

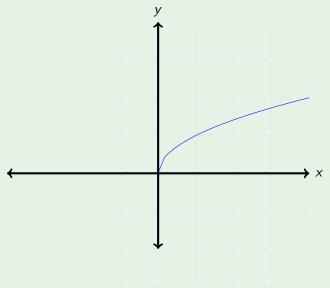
1
$$f(x) = 3x + 2$$
.

2
$$f(x) = x^2 - 1(x > 0)$$
.

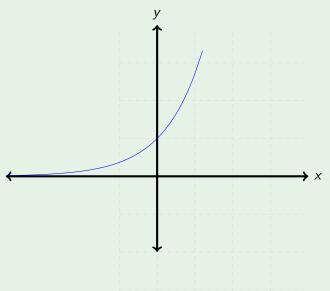
$$f(x) = \frac{1}{x}.$$

$$f(x) = \sqrt{x}.$$

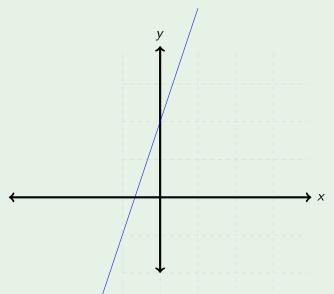
Find the graph of the inverse function of the following functions:



Find the graph of the inverse function of the following functions:



Find the graph of the inverse function of the following functions:



Inverse Trigonometric Functions

Example 8

Let $y = f(x) = \sin x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$f^{-1}(x) = \sin^{-1} x = \arcsin x.$$

- ① Domain of \sin^{-1} is [-1, 1].
- 2 Range of \sin^{-1} is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Inverse Trigonometric Functions

Example 9

Let $y = f(x) = \cos x$. Then the graph of the f(x) is given by

Therefore, f has an inverse if $x \in [0, \pi]$ and we write it as

$$f^{-1}(x) = \cos^{-1} x = \arccos x.$$

- ① Domain of \cos^{-1} is [-1, 1].
- ② Range of \cos^{-1} is $[0, \pi]$.

Inverse Trigonometric Functions

Example 10

Let $y = f(x) = \tan x$. Then the graph of the f(x) is given by Therefore,

f has an inverse if $x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$f^{-1}(x) = \tan^{-1} x = \arctan x.$$

- **1** Domain of tan^{-1} is $[-\infty, \infty]$.
- 2 Range of \tan^{-1} is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Exercise 11

Find the domain, range, and the graph of inverse of the following functions:

- $f(x) = \sec x.$
- $f(x) = \csc x.$