Section 3.8
 Derivative of the inverse function and logarithms

 3 LectureDr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Topics

(1) Inverse Functions (1 lecture).
(2) Logarithms.
(3) Derivative of the inverse function (1 lecture).
(9) Logarithmic differentiation (1 lecture).

1 - Inverse functions (pre-calculus)

Definition 1

Let f be a function. The inverse function, denoted by f^{-1} of f is a new function such that

$$
\underbrace{f}_{\text {outer }}(\underbrace{f^{-1}}_{\text {inner }}(x))=x \text { and } \underbrace{f^{-1}}_{\text {outer }}(\underbrace{f}_{\text {inner }}(x))=x
$$

(The function and its inverse cancel each other).

Example 2

(a) Let $f(x)=x+5$, then $f^{-1}(x)=x-5$ (we will see how to find the inverse shortly). Note that:

- $f\left(f^{-1}(x)\right)=f(x-5)=x-5+5=x$.
- $f^{-1}(f(x))=f^{-1}(x+5)=x+5-5=x$.
(b) Let $f(x)=x^{2}(x \geq 0)$, then $f^{-1}(x)=\sqrt{x}$ because:
- $f\left(f^{-1}(x)\right)=f(\sqrt{x})=(\sqrt{x})^{2}=x$.
- $f^{-1}(f(x))=f^{-1}\left(x^{2}\right)=\sqrt{x^{2}}=|x|=x$.

Question: Does every function have an inverse? How to tell when a function has an inverse?
Answer: No, we use the horizontal line test if we have the graph of the function.

To find the inverse function

To find the inverse function

Algebraically
Step 1: Write $y=f(x)$.
Step 2: Switch x
and y to get $x=f(y)$.
Step 3: Solve for y, i.e., isolate y alone to get $y=f^{-1}(x)$.

Geometrically

Step 1: Reflect the graph of $y=f(x)$ on the x-axis.

Step 2: rotate the resulting graph by 90° counterclockwise to get the graph of $f^{-1}(x)$.

Example 3

Find the inverse of $g(x)=5 x-3$.
Solution:
Step 1: Write $y=g(x) \rightarrow y=5 x-3$.
Step 2: Exchange x and y in step $1 \rightarrow x=5 y-3$.
Step 3: Solve the equation in step 1 for y

$$
\begin{aligned}
x & =5 y-3 \\
x+3 & =5 y \\
\frac{x+3}{5} & =y
\end{aligned}
$$

Hence we have

$$
g^{-1}(x)=\frac{x+3}{5}
$$

Exercise 4

Find the inverse function of
(1) $f(x)=3 x+2$.
(2) $f(x)=x^{2}-1(x>0)$.
(3) $f(x)=\frac{1}{x}$.
(9) $f(x)=\sqrt{x}$.

Example 5

Find the graph of the inverse function of the following functions:

Example 6

Find the graph of the inverse function of the following functions:

Example 7

Find the graph of the inverse function of the following functions:

Inverse Trigonometric Functions

Example 8

Let $y=f(x)=\sin x$. Then the graph of the $f(x)$ is given by

Therefore, f has an inverse if $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$
f^{-1}(x)=\sin ^{-1} x=\arcsin x
$$

(1) Domain of $\sin ^{-1}$ is $[-1,1]$.
(2) Range of $\sin ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Inverse Trigonometric Functions

Example 9

Let $y=f(x)=\cos x$. Then the graph of the $f(x)$ is given by

Therefore, f has an inverse if $x \in[0, \pi]$ and we write it as

$$
f^{-1}(x)=\cos ^{-1} x=\arccos x
$$

(1) Domain of $\cos ^{-1}$ is $[-1,1]$.
(2) Range of $\cos ^{-1}$ is $[0, \pi]$.

Inverse Trigonometric Functions

Example 10

Let $y=f(x)=\tan x$. Then the graph of the $f(x)$ is given by Therefore,
f has an inverse if $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and we write it as

$$
f^{-1}(x)=\tan ^{-1} x=\arctan x
$$

(1) Domain of $\tan ^{-1}$ is $[-\infty, \infty$.
(2) Range of $\tan ^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

Exercise 11

Find the domain, range, and the graph of inverse of the following functions:
(1) $f(x)=\cot x$.
(2) $f(x)=\sec x$.
(3) $f(x)=\csc x$.

