Section 3.8
 Derivative of the inverse function and logarithms

 3 LectureDr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Topics

(1) Inverse Functions (1 lecture).
(2) Logarithms.
(3) Derivative of the inverse function (1 lecture).
(9) Logarithmic differentiation (1 lecture).

2- Logarithmic Function

Consider the exponential function $f(x)=a^{x}$.
Question: Does $f(x)$ has an inverse? Why?
Answer: Yes, by the horizontal line test.

- $f^{-1}(x)$ is called logarithmic function base a and it is denoted by

$$
f^{-1}(x)=\log _{a} x
$$

Note: (The fundamental equations)
(1) $f\left(f^{-1}\right)(x)=x$, so we have $a^{\log _{a} x}=x$.
(2) $f^{-1}(f(x))=x$, so we have $\log _{a} a^{x}=x$.

$$
\underbrace{\log _{a} x=y}_{\text {logarithmic form }} \text { if and only if } \underbrace{x=a^{y}}_{\text {exponential form }}
$$

If $a=e=2.718281828 \ldots$ (Euler number), then we simply write $\log _{e}$ as In "ell en" and it is called the natural logarithm.

Properties of Logarithms

(1) $\log _{a}(m \cdot n)=\log _{a} m+\log _{a} n$.
(2) $\log _{a}\left(\frac{m}{n}\right)=\log _{a} m-\log _{a} n$.
(3) $\log _{a} m^{r}=r \log _{a} m$.
(9) $\log _{a} 1=0$.
(6) $\log _{a} a=1$.
(0. (change of bases) $\log _{a} m=\frac{\log _{b} m}{\log _{b} a}$.

Exercise 1

Use the fundamental equations to prove these six properties of the logarithms.

Example 2

(Expansion) Write the following expression as sum or difference of logarithms
(1) $\ln \left(\frac{x}{w z^{2}}\right)=\ln x-\ln \left(w z^{2}\right)=\ln x-\left(\ln w+\ln z^{2}\right)=\ln x-\ln w-2 \ln z$.
(2) $\ln \left(\frac{x+1}{x+5}\right)^{4}=4 \ln \left(\frac{x+1}{x+5}\right)=4(\ln (x+1)-\ln (x+5))$.
(3) $\ln \left(\frac{\sqrt{x}}{\left(x^{2}\right)(x+3)^{4}}\right)=\ln \sqrt{x}-\ln x^{2}-\ln (x+3)^{4}=$
$\ln x^{\frac{1}{2}}-2 \ln x-4 \ln (x+3)=\frac{1}{2} \ln x-2 \ln x-4 \ln (x+3)=$ $-\frac{3}{2} \ln x-4 \ln (x+3)$.

Exercise 3

Write each of the following expression as sum or difference of logarithms:
(1) $\log _{3}\left(\frac{5 \cdot 7}{4}\right)$
(2) $\log _{2}\left(\frac{x^{5}}{y^{2}}\right)$
(3) $\log \left(\frac{x^{2} z}{w y^{2}}\right)$
(4) $\ln \sqrt{\frac{x+1}{x-2}}$.

Example 4

Write each of the following logarithm in terms of natural logarithm.
(1) $\log _{3} x=\frac{\ln x}{\ln 3}$.
(2) $\log _{6} 7=\frac{\ln 7}{\ln 6}$.
(3) $\log _{2} y=\frac{\ln y}{\ln 2}$.

The derivative of the inverse function

Strategy:

Goal: We want to find $\frac{d}{d x}\left(f^{-1}(x)\right)$.

$$
\begin{aligned}
\text { Write } y & =f^{-1}(x), \text { we want to find } y^{\prime} \\
f(y) & =f\left(f^{-1}(x)\right) \\
f(y) & =x \\
f^{\prime}(y) \cdot y^{\prime} & =1 \\
y^{\prime} & =\frac{1}{f^{\prime}(y)}=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Geometric Interpretation *

Note that

$$
\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

so the slope of f^{-1} is reciprocal to the slope of f. Geometrically,

Example 5

Let $f(x)=x^{3}-3 x^{2}-1$. Find $\frac{d}{d x}(f(x))$ and $\frac{d}{d x}\left(f^{-1}(x)\right)$ at the point $(3,-1)$

Solution:

$$
\begin{aligned}
\frac{d}{d x}(f(x)) & =3 x^{2}-6 x \\
\frac{d}{d x}(f(x))_{(3,-1)} & =3(3)^{2}-6(3)=9 \\
\frac{d}{d x}\left(f^{-1}(x)\right) & =\frac{1}{f^{\prime}(y)} \\
& =\frac{1}{3 y^{2}-6 y} \\
\frac{d}{d x}\left(f^{-1}(x)\right)_{(3,-1)} & =\frac{1}{3(3)^{2}-6(3)}=\frac{1}{9}
\end{aligned}
$$

Exercise 6

Let $f(x)=x+e^{x}$. What is the value of $f^{-1}(1)$. Find $\left(f^{-1}\right)^{\prime}(1)$.

Derivative of In

Example 7

Find $\frac{d}{d x}(\ln x)$.
Solution:

$$
\begin{aligned}
y & =\ln x \\
e^{y} & =x \\
e^{y} \cdot y & =1 \\
y & =\frac{1}{e^{y}} \\
y^{\prime} & =\frac{1}{x}
\end{aligned}
$$

Exercise 8

Find y^{\prime} if $y=\log _{a} x$.
(Hint: Use the change of base formula to change it to \ln)

Recall

The Chain Rule
Theorem 9

$$
\begin{gathered}
(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
(f(g(x)))^{\prime}=\text { derivative of outer }(\text { inner }) \cdot(\text { derivative of inner })
\end{gathered}
$$

Example 10

Find y^{\prime} for each of the following:
(1) $f(x)=\ln x^{2}=\ln x^{2} \rightarrow y^{\prime}=\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$
(2) $f(x)=\ln (2 x+3)=\ln (2 x+3) \rightarrow y^{\prime}=\frac{1}{(2 x+3)} \cdot 2$
(3) $f(x)=x \ln x \rightarrow y^{\prime}=(1) \ln x+x \cdot \frac{1}{x}=\ln x+1$.
(9) $f(x)=\ln (\ln x)=\ln (\ln x) \rightarrow y^{\prime}=\frac{1}{(\ln x)} \cdot \frac{1}{x}$.
(5) $f(x)=\ln (\sin x)=\ln (\sin x) \rightarrow y^{\prime}=\frac{1}{(\sin x)} \cdot \cos x=\cot x$.
(0) $f(x)=\sin (\ln x)=\sin (\ln x) \rightarrow y^{\prime}=\cos (\ln x) \frac{1}{(x)}$.

Exercise 11

Find the derivative of the following functions:
(1) $y=\ln (\csc x-\cot x)$
(2) $y=\frac{\ln x}{1+\ln x}$
(3) $y=\ln \ln \ln x$

Derivative using the properties of Logarithms

Example 12

Find the derivative of
(1) $f(x)=\ln x^{2017}$

Solution: First we re-write the function in terms using the properties of the \ln to get a simplified function:

$$
f(x)=2017 \ln x
$$

Hence

$$
f^{\prime}(x)=2017 \frac{1}{x}
$$

Exercise 13

Using the chain rule, find the derivative of the function of the previous example without using the properties of the \ln, i.e., find $f^{\prime}(x)$ for

$$
f(x)=\ln \left(x^{2017}\right)
$$

Derivative using the properties of Logarithms

Example 14

Find the derivative of
(1) $f(x)=\ln \sqrt[3]{\frac{x^{3}-1}{x^{3}+1}}$

Solution: First we re-write the function in terms using the properties of the In to get a simplified function:

$$
\begin{aligned}
f(x) & =\ln \left(\frac{x^{3}-1}{x^{3}+1}\right)^{\frac{1}{3}} \\
& =\frac{1}{3}\left(\ln \left(x^{3}-1\right)-\ln \left(x^{3}+1\right)\right)
\end{aligned}
$$

Continue...

We write the inner function in blue and the outer function in red and we apply the chain rule.

$$
\begin{aligned}
& \text { derivative of outer (inner) } \cdot(\text { derivative of inner) } \\
& f(x)=\frac{1}{3}\left(\ln \left(x^{3}-1\right)-\ln \left(x^{3}+1\right)\right) \\
& f^{\prime}(x)=\frac{1}{3}\left(\frac{1}{x^{3}-1} \cdot\left(3 x^{2}\right)-\frac{1}{x^{3}+1} \cdot\left(3 x^{2}\right)\right)
\end{aligned}
$$

Exercise 15

Using the chain rule, find the derivative of the function of the previous example without using the properties of the \ln, i.e., find $f^{\prime}(x)$ for

$$
f(x)=\ln \left(\sqrt[3]{\frac{x^{3}-1}{x^{3}+1}}\right)
$$

Example 16
Find $\frac{d^{4} y}{d x^{4}}$ for

$$
y=5 \ln x
$$

Solution:

$$
\begin{aligned}
y^{\prime} & =5 \frac{1}{x} \\
& =5 x^{-1} \\
y^{\prime \prime} & =-5 x^{-2} \\
y^{\prime \prime \prime} & =10 x^{-3} \\
y^{(4)} & =-30 x^{-4} \\
& =\frac{-30}{x^{4}}
\end{aligned}
$$

