Section 4.1
 Relative Extrema

3 Lectures

Dr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Application of Differentiation

One of the most important applications of differential calculus are the optimization problems, i.e., finding the optimal (best) way to do something. In our case, these optimization problem are reduced to find the minimum or maximum of a function.

Example 1

(1) Find the length that maximizes the area.
(2) Find the radius that minimize the perimeter of certain circle.

1 - Monotone Functions

Increasing Function

Geometry

Algebra

$$
\text { If } a \leq b \text {, then } f(a) \leq f(b)
$$

Exercise 2
 Write a similar definition for decreasing function.

Definition 3

A monotone function is either an increasing or decreasing function.

Question: How to tell when a function is increasing or decreasing? Answer: One way is to use the definition above, which is hard to do in general. The other way is to use Calculus as follows:

- If $f^{\prime}(x) \geq 0$, then $f(x)$ is increasing.
- If $f^{\prime}(x) \leq 0$, then $f(x)$ is decreasing.

2 - Absolute Extrema

Absolute Maximum (Global Maximum)

Algebra

Geometry
$f(c)$ is an absolute maximum (global maximum) if

$$
f(x) \leq f(c), \text { for all } x
$$

- $f(c)$ is the absolute maximum (only one).
- c is called absolute maximizer

Exercise 4

Write a similar definition for absolute minimum.

Definition 5

An absolute extrema is either an absolute maximum or absolute minimum function.

3 - Relative Extrema

Relative Maximum (Local Maximum)

Algebra
Geometry
$f(c)$ is an local maximum (relative maximum) if
$f(x) \leq f(c)$, for some value of x nea

- $f(c)$ is the local maximum (maybe more than one).
- c is called local maximizer

Exercise 6

Write a similar definition for local minimum.

Definition 7

An local extrema (relative extrema is either an local maximum or loca minimum function.

Example 8

Let $f(x)=\sin x$, then

- It has a global minimum at $\left(\frac{-\pi}{2},-1\right),\left(\frac{3 \pi}{2},-1\right), \ldots,\left(\frac{3 \pi}{2}+2 n \pi,-1\right)$.
- It has a global maximum at $\left(\frac{-3 \pi}{2}, 1\right),\left(\frac{\pi}{2}, 1\right), \ldots,\left(\frac{\pi}{2}+2 n \pi, 1\right)$.

Example 9

Let $f(x)=x^{2}$, then

- It has a global minimum at $(0,0)$.
- It has no global maximum.

Example 10

Let $f(x)=e^{x}$, then

- It has no global minimum.
- It has no global maximum.

critical numbers

Question: How to find the extrema (local min, local max, absolute min, absolute max)?
Answer: The following are the candidates for the extrma.

Definition 11

A number c is called a critical number for $f(x)$ if either

$$
f^{\prime}(c)=0 \text { or } f^{\prime}(c) \text { does not exist }
$$

Note: These critical numbers are the candidates for local maximum or local minimum.
To find these numbers, write the derivative as rational function, i.e., $f^{\prime}(x)=\frac{\text { numerator }}{\text { denominator }}$ and then we have
(1) $f^{\prime}(x)=0 \rightarrow$ numerator $=0$.
(2) $f^{\prime}(x)=$ does not exist \rightarrow denominator $=0$.

Example 12

Find the critical numbers of the following function

$$
f(x)=x^{3}+x^{2}-x
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=3 x^{2}+2 x-1
$$

To find the critical numbers, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \text { numerator }=0 \\
& 3 x^{2}+2 x-1=0 \\
& x=-1 \text { or } x=\frac{1}{3}
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False
No Solution

Exercise 13

Find the critical numbers of the following function

$$
f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5
$$

Example 14

Find the critical numbers of the following function

$$
f(x)=\sqrt{3} \sin x+\cos x
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=\sqrt{3} \cos x-\sin x
$$

We find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \text { numerator }=0 \\
& \sqrt{3} \cos x-\sin x=0 \\
& \sqrt{3} \cos x=\sin x \\
& \sqrt{3}=\tan x \rightarrow x=\tan ^{-1} \sqrt{3} \\
& x=\frac{\pi}{3}+2 n \pi \text { or } x=\frac{4 \pi}{3}+2 n \pi
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$ $1=0$
Always False
No Solution

Exercise 15

Find the critical numbers of the following function

$$
f(x)=\frac{x}{2}-\sin x
$$

Example 16

Find the critical numbers of the following function

$$
f(x)=\sqrt{1-x^{2}}
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=\frac{-2 x}{2 \sqrt{1-x^{2}}}
$$

To find the critical numbers, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
-2 x & =0 \\
x & =0
\end{aligned}
$$

$f^{\prime}(x)$ does not exist
denominator $=0$

$$
\begin{aligned}
& 1-x^{2}=0 \\
& x=1 \text { or } x=-1
\end{aligned}
$$

Exercise 17

Find the critical numbers of the following function

$$
f(x)=\sqrt[3]{4-x^{2}}
$$

Example 18

Find the critical numbers of the following function

$$
f(x)=\frac{x-1}{x^{2}-x+1}
$$

Solution:

We find the derivative first which is

$$
f^{\prime}(x)=\frac{\left(x^{2}-x+1\right)(1)-(x-1)(2 x-1)}{\left(x^{2}-x+1\right)^{2}}=\frac{-x^{2}+2 x}{\left(x^{2}-x+1\right)^{2}}
$$

To find the critical numbers, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
-x^{2}+2 x & =0 \\
x=0 & \text { or } x=2
\end{aligned}
$$

$f^{\prime}(x)$ does not exist
denominator $=0$

$$
x^{2}-x+1=0
$$

No Solution

Exercise 19

Find the critical numbers of the following function

$$
f(x)=\frac{x-1}{x^{2}-4}
$$

