Section 4.1
 Relative Extrema

3 Lectures

Dr. Abdulla Eid
College of Science

MATHS 101: Calculus I

First Derivative Test

Question: How to find the local minimum and local maximum?
Theorem 1
(First Derivative Test)
(1) If $f^{\prime}(x)$ changes from positive to negative as x increases, then f has a local maximum at a.
(2) If $f^{\prime}(x)$ changes from negative to positive as x increases, then f has a local minimum at a.

Example 2

Find the intervals where the function is increasing/decreasing and find all local max/min.

$$
f(x)=2 x^{3}+3 x^{2}-36 x
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=6 x^{2}+6 x-36
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
6 x^{2}+6 x-36 & =0 \\
x=2 & \text { or } x=-3
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False
No Solution

Number Line

(1) f is increasing in $(-\infty,-3) \cup(2, \infty)$.
(2) f is decreasing in $(-3,2)$.
(3) f has a local maximum at $x=-3$ with value $f(-3)=66$.
(9) f has a local minimum at $x=2$ with value $f(2)=-44$.

Exercise 3

Find the intervals where the function is increasing/decreasing and find all local max/min.

$$
f(x)=x^{4}-2 x^{2}+3
$$

Example 4

Find the intervals where the function is increasing/decreasing and find all local \max / min.

$$
f(x)=\sin x+\cos x, \quad x \in[0,2 \pi]
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=\cos x-\sin x
$$

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
\sin x-\cos x & =0 \\
\sin x & =\cos x \\
\tan x=1 & \rightarrow x=\tan ^{-1} 1 \\
x=\frac{\pi}{4} & \text { or } x=\frac{5 \pi}{4}
\end{aligned}
$$

$f^{\prime}(x)$ does not exist
denominator $=0$
$1=0$
Always False
No Solution

Number Line

(1) f is increasing in $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, 2 \pi\right)$.
(2) f is decreasing in $\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)$.
(3) f has a local maximum at $x=\frac{\pi}{4}$ with value $f\left(\frac{\pi}{4}\right)=\sqrt{2}$.
(9) f has a local minimum at $x=\frac{5 \pi}{4}$ with value $f\left(\frac{5 \pi}{4}\right)=-\sqrt{2}$.

Exercise 5

Find the intervals where the function is increasing/decreasing and find all local max/min.

$$
f(x)=x^{2}-x-\ln x
$$

Example 6

Find the intervals where the function is increasing/decreasing and find all local max/min.

$$
f(x)=\frac{x^{2}}{x-1}
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=\frac{(x-1)(2 x)-\left(x^{2}\right)(1)}{(x-1)^{2}}=\frac{x^{2}-2 x}{(x-1)^{2}}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
f^{\prime}(x)=0
$$

$$
\text { numerator }=0
$$

$f^{\prime}(x)$ does not exist
denominator $=0$

$$
\begin{aligned}
& x^{2}-2 x=0 \\
& \quad x=0 \text { or } x=2
\end{aligned}
$$

$$
\begin{aligned}
(x-1)^{2} & =0 \\
x & =1
\end{aligned}
$$

Number Line

(1) f is increasing in $(-\infty, 0) \cup(2, \infty)$.
(2) f is decreasing in $(0,2)$.
(3) f has a local maximum at $x=0$ with value $f(0)=0$.
(1) f has a local minimum at $x=2$ with value $f(2)=4$.

Exercise 7

Find the intervals where the function is increasing/decreasing and find all local max/min.

$$
f(x)=\sin ^{-1} x
$$

Solution:
We find the derivative first which is

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.
$f^{\prime}(x)$ does not exist

$$
\text { numerator }=0
$$

$$
1=0
$$

Always False
No Solution

$$
f^{\prime}(x)=0
$$

$$
\text { denominator }=0
$$

$$
\begin{aligned}
& \sqrt{1-x^{2}}=0 \\
& x=-1 \text { or } x=1
\end{aligned}
$$

Number Line

Recall the domain of $f(x)=\sin ^{-1} x$ which is $[-1,1]$.
(1) f is increasing in $(-1,1)$.
(2) f has no local maximum nor local minimum.

Example 8

If f is an increasing function. Show that f^{-1} is an increasing function.

Solution:

Since f is an increasing function, then $f^{\prime}>0$. Now we find the derivative of f^{-1} which is

$$
\left(f^{-1}(y)\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}>0
$$

(Critical point, but not local extreme)

Exercise 9

Show that 3 is a critical number for $f(x)=7+(x-3)^{5}$, but f does not have a local extreme at $x=3$.

