Section 4.1
 Absolute Extrema
 1/2 Lecture

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Extreme Value Theorem

Recall: To find the local max or local min, we need to apply the first derivative test.

Theorem 1

(Extreme Value Theorem) If f is a continuous function of a closed interval $[a, b]$, then it has both a global maximum and global minimum.

The theorem above guarantees that we have a global max and global min. The question is how to find the global max and global min?
(1) Find the critical points c and evaluate $f(c)$.
(2) Find the value of the function at the endpoints $f(a), f(b)$.
(3) The global maximum (or global minimum) is the one that is the largest (smallest) value.

Example 2

Find the absolute maximum and absolute minimum values of

$$
f(x)=x^{3}-3 x+5
$$

on the interval $[-3,0]$
Solution:
We find the derivative first which is

$$
f^{\prime}(x)=3 x^{2}-3
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
3 x^{2}-3 & =0 \\
x=1 & \text { or } x=-1
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False
No Solution

Table

Now we fill the table with critical points as well as the endpoints

x	-3	-1	0
$f(x)$			

(1) The absolute minimum of f is -13 at $x=-3$.
(2) The absolute maximum of f is 7 at $x=-1$.

Exercise 3

Find the absolute maximum and absolute minimum values of

$$
f(x)=3 x^{4}-4 x^{3}
$$

on the interval $[-2,2]$

Example 4

Find the absolute maximum and absolute minimum values of

$$
f(x)=x+\frac{1}{x}
$$

on the interval $[0.5,4]$
Solution:
We find the derivative first which is

$$
f^{\prime}(x)=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \text { numerator }=0 \\
& x^{2}-1=0 \\
& x=1 \text { or } x=-1 \\
& f^{\prime}(x) \text { does not exist } \\
& \text { denominator }=0 \\
& x^{2}=0 \\
& x=0
\end{aligned}
$$

Table

Now we fill the table with critical points as well as the endpoints

x	0.5	1	4
$f(x)$			

(1) The absolute maximum of f is 4.25 at 4 .
(2) The absolute minimum of f is 2 at 1 .

Exercise 5

Find the absolute maximum and absolute minimum values of

$$
f(x)=x^{-2} \ln x
$$

on the interval $[0.5,4]$

Example 6

Find the absolute maximum and absolute minimum values of

$$
f(x)=t \sqrt{4-t^{2}}
$$

on the interval $[-1,2]$

Solution:
We find the derivative first which is
$f^{\prime}(x)=\sqrt{4-t^{2}}+t \cdot \frac{1}{2 \sqrt{4-t^{2}}} \cdot-2 t=\sqrt{4-t^{2}}-\frac{t^{2}}{\sqrt{4-t^{2}}}=\frac{4-2 t^{2}}{\sqrt{4-t^{2}}}$
To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
4-2 t^{2} & =0 \\
x=-\sqrt{2} & \text { or } x=\sqrt{2}
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
\begin{gathered}
4-t^{2}=0 \\
x=-2 \text { or } x=2
\end{gathered}
$$

Table

Now we fill the table with critical points as well as the endpoints

x	-1	$\sqrt{2}$	2
$f(x)$			

(1) The absolute maximum of f is 2 at $\sqrt{2}$.
(2) The absolute minimum of f is $-\sqrt{3}$ at -1 .

Exercise 7

Find the absolute maximum and absolute minimum values of

$$
f(x)=\cos x
$$

on the interval $\left[-\frac{\pi}{2}, \frac{-\pi}{4}\right]$

