Section 4.2
 The mean value theorem
 1 Lecture

Dr. Abdulla Eid

College of Science
MATHS 101: Calculus I

Rolle's Theorem

Theorem 1
Let $f(x)$ be a function on the interval $[a, b]$ such that the following hypothesis are satisfied:
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (x, b).
(3) $f(a)=f(b)$.

Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=0
$$

Example 2

Determine all the numbers c which satisfy the conclusions of the Rolle's Theorem for the following function

$$
f(x)=-x^{3}-x^{2}+2 x \quad \text { on }[-2,1]
$$

Mean Value Theorem

Theorem 3

Let $f(x)$ be a function on the interval $[a, b]$ such that the following hypothesis are satisfied:
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (x, b).

Then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example 4

Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function

$$
f(x)=x^{3}+2 x-x \quad \text { on }[-1,2]
$$

Example 5

Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function

$$
f(x)=8 t+e^{-3 t} \quad \text { on }[-2,3]
$$

Example 6

Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for the following function

$$
f(x)=9 x-8 \sin \left(\frac{x}{2}\right) \quad \text { on }[-3,1]
$$

Example 7

Suppose that $f(x)$ is continuous and differentiable on $[6,15]$. Suppose that $f(6)=-1$ and $f^{\prime}(x) \leq 10$ for all $x \in(6,15)$. Find the largest possible value of $f(15)$?

