Section 4.3
 Concavity and Curve Sketching
 1.5 Lectures

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

Concavity

> Increasing Function has three cases

Question: How to distinguish between these three types of behavior? Answer: Recall: If $g(x)$ is increasing, then $g^{\prime}(x)>0$.
(1) If $f^{\prime \prime}(x)>0$, then the curve is concave upward (CU).
(2) If $f^{\prime \prime}(x)<0$, then the curve is concave downward (CD).
(3) If $f^{\prime \prime}(x)=0$ (for all x), then $f(x)$ has no curvature (line).

Inflection Points

Definition 1

A number c is called an inflection point of $f(x)$ if at these point, the function changes from concave upward to downward and vice verse. The candidates are the points c, where

$$
f^{\prime \prime}(c)=0 \text { or } f^{\prime \prime}(c) \text { does not exist }
$$

Example 2

Discuss the following curve with respect to concavity and inflection points.

$$
f(x)=x^{3}
$$

Solution:
We find the derivatives first which are

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \\
& f^{\prime \prime}(x)=6 x
\end{aligned}
$$

To find the inflection points, we find where the second derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\text { numerator } & =0 \\
6 x & =0 \\
x & =0
\end{aligned} \quad \text { denominator }=0
$$

Number Line

(1) f is CD in $(-\infty, 0)$.
(2) f is CU in $(0, \infty)$.
(3) f has inflection point at $x=0$ with value $f(0)=0$. As a point it is $(0,0)$

Exercise 3

Discuss the following curve with respect to concavity and inflection points.

$$
f(x)=x^{4}-3 x^{3}+3 x^{2}-5
$$

Solution:
We find the derivatives first which are

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-9 x^{2}+6 x \\
f^{\prime \prime}(x) & =12 x^{2}-18 x+6
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0
$$

numerator $=0$
$12 x^{2}-18 x+6=0$

$$
x=1 \text { or } x=\frac{1}{2}
$$

$f^{\prime}(x)$ does not exist
denominator $=0$
$1=0$
Always False
No Solution

Number Line

(1) f is $C D$ in $\left(\frac{1}{2}, 1\right)$.
(2) f is CU in $\left(-\infty, \frac{1}{2}\right) \cup(1, \infty)$.
(3) f has inflection point at $x=\frac{1}{2}$ with value $f\left(\frac{1}{2}\right)=$ and at $x=1$ with value $f(1)=$.

Exercise 4

Discuss the following curve with respect to concavity and inflection points.

$$
f(x)=2+\sin x, \quad x \in[0,2 \pi]
$$

Solution:
We find the derivatives first which are

$$
\begin{array}{r}
f^{\prime}(x)=\cos x \\
f^{\prime \prime}(x)=-\sin x
\end{array}
$$

To find the inflection points, we find where the second derivative equal to zero or does not exist.

$$
\begin{array}{rrr}
f^{\prime \prime}(x)=0 & f^{\prime \prime}(x)=\text { does not exist } \\
\text { numerator }=0 & \text { denominator }=0 \\
\sin x=0 & -1=0 \\
x=0 \text { or } x=\pi & & \text { Always False } \\
& & \text { No Solution }
\end{array}
$$

Number Line

(0) f is CU in $(\pi, 2 \pi)$.
(2) f is CD in $(0, \pi)$.
(0) f has an inflection point at $(\pi, 0)$.

Example 5

(All in All) Find the intervals where the function is increasing/decreasing, concave upward, concave downward, find all local max/min, find inflection points and sketch the graph of the function.

$$
f(x)=x^{3}-6 x^{2}+9 x+1
$$

Solution: We find the derivative first which is

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-12 x+9 \\
f^{\prime \prime}(x)=6 x-12
\end{array}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
3 x^{2}-12 x+9 & =0 \\
x=1 & \text { or } x=3
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False

Number Line

(1) f is increasing in $(-\infty, 1) \cup(3, \infty)$.
(2) f is decreasing in $(1,3)$.
(3) f has a local maximum at $x=1$ with value $f(1)=5$.
(9) f has a local minimum at $x=3$ with value $f(3)=1$.

Recall that the derivatives are

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-12 x+9 \\
f^{\prime \prime}(x)=6 x-12
\end{array}
$$

To find the inflection points, we find where the second derivative equal to zero or does not exist.
$f^{\prime}(x)$ does not exist denominator $=0$
$1=0$
Always False
No Solution

Number Line

(1) f is CD in $(-\infty, 2)$.
(c) f is CU in $(2, \infty)$.

- f has inflection point at $x=2$ with value $f(2)=3$.

Exercise 6

(All in All) Find the intervals where the function is increasing/decreasing, concave upward, concave downward, find all local max/min, find inflection points and sketch the graph of the function.

$$
f(x)=x^{5}-4 x^{4}
$$

Solution: We find the derivative first which is

$$
\begin{gathered}
f^{\prime}(x)=5 x^{4}-20 x^{3} \\
f^{\prime \prime}(x)=20 x^{3}-60 x^{2}
\end{gathered}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
5 x^{4}-20 x^{3} & =0 \\
x=0 & \text { or } x=4
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False

Recall that the derivatives are

$$
\begin{array}{r}
f^{\prime}(x)=5 x^{4}-20 x^{3} \\
f^{\prime \prime}(x)=20 x^{3}-60 x^{2}
\end{array}
$$

To find the inflection points, we find where the second derivative equal to zero or does not exist.

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\text { numerator } & =0 \\
20 x^{3}-60 x^{2} & =0 \\
x=1 & \text { or } x=3
\end{aligned}
$$

Number Line

(1) f is CD in $(-\infty, 3)$.
(2) f is CU in $(3, \infty)$.
(0) f has inflection point at $x=3$ with value $f(3)=$.

Example 7

(All in All) Find the intervals where the function is increasing/decreasing, concave upward, concave downward, find all local max/min, find inflection points and sketch the graph of the function.

$$
f(x)=x-\sin x, \quad x \in[0,4 \pi]
$$

Solution: We find the derivative first which is

$$
\begin{array}{r}
f^{\prime}(x)=1-\cos x \\
f^{\prime \prime}(x)=-\sin x
\end{array}
$$

$$
f^{\prime}(x)=0
$$

$$
\text { numerator }=0
$$

$$
\begin{aligned}
1-\cos x & =0 \rightarrow \cos x=1 \\
x=0 \text { or } x & =2 \pi \text { or } x=4 \pi
\end{aligned}
$$

$f^{\prime}(x)$ does not exist denominator $=0$

$$
1=0
$$

Always False
No Solution

Number Line

(1) f is increasing in $(0,2 \pi) \cup(2 \pi, 4 \pi)$.
(2) f is not decreasing on $[0,4 \pi]$.
(0) f has no local maximum nor local minimum.

Recall that the derivatives are

$$
\begin{array}{r}
f^{\prime}(x)=1-\cos x \\
f^{\prime \prime}(x)=\sin x
\end{array}
$$

$f^{\prime}(x)$ does not exist

$$
f^{\prime \prime}(x)=0
$$

$$
\text { numerator }=0
$$

denominator $=0$

$$
\sin x=0
$$

$$
1=0
$$

$$
x=0 \text { or } x=\pi \text { or } x=2 \pi
$$

Always False

$$
\text { or } x=2 \pi \text { or } 4 \pi
$$

No Solution

Number Line

(1) f is CD in $(0, \pi) \cup(2 \pi, 3 \pi)$.
(2) f is CU in $(\pi, 2 \pi) \cup(3 \pi, 4 \pi)$.
(3) f has inflection point at $x=\pi, 2 \pi, 3 \pi$ with points $(\pi, \pi),(2 \pi, 2 \pi)$, and $(3 \pi, 3 \pi)$.

Number Line

(1) f is increasing in $(-\infty, 0) \cup(4, \infty)$.
(2) f is decreasing in $(0,4)$.
(3) f has a local maximum at $x=0$ with value $f(0)=0$.
(9) f has a local minimum at $x=4$ with value $f(4)=$.

General Guidelines to sketch the curve of a rational function $y=f(x)$

(1) Find the domain of $f(x)$.
(2) Find the x-intercept by solving $y=0$ (whenever possible). Find the y-intercept by setting $x=0$ to find $y=f(0)$ (if possible).
(3) Find the horizontal and vertical asymptotes.
(9) Find the local maximum, local minimum, inflection points the interval where the function is increasing, decreasing, concave upward, concave downward.

Example 8

Sketch the function

$$
y=f(x)=\frac{x}{x-2}
$$

Solution: 1- The domain of $f(x)$ is all real numbers except $x=2$.
2- x-intercept: solve

$$
y=0 \rightarrow \frac{x}{x-2}=0 \rightarrow x=0
$$

so $(0,0)$ is the x-intercept. Moreover, it is the y-intercept.
3- Horizontal Asympotote:

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x}{x-2}=1
$$

So $y=1$ is the horizontal asymptote. Moreover, $x=2$ is the vertical asymptote.

4- Local max, local min

Example 9

Sketch the function

$$
y=f(x)=\frac{x}{x-2}
$$

Solution: We find the derivative first which is

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-2}{(x-2)^{2}} \\
f^{\prime \prime}(x) & =\frac{4}{(x-2)^{3}}
\end{aligned}
$$

To find the critical points, we find where the derivative equal to zero or does not exist.

$$
f^{\prime}(x) \text { does not exist }
$$

$$
\text { numerator }=0
$$

$$
f^{\prime}(x)=0
$$

$$
-2=0
$$

denominator $=0$

$$
x-2=0
$$

Number Line

(1) f is decreasing in $(-\infty, 2) \cup(2, \infty)$.
(2) f has no local maximum or local minimum.

Recall that the derivatives are

$$
\begin{aligned}
f^{\prime}(x) & =\frac{-2}{(x-2)^{2}} \\
f^{\prime \prime}(x) & =\frac{4}{(x-2)^{3}}
\end{aligned}
$$

$f^{\prime \prime}(x)$ does not exist
numerator $=0$

$$
4=0
$$

Always False
No Solution

$$
\begin{aligned}
f^{\prime \prime}(x) & =0 \\
\text { denominator } & =0 \\
x-2 & =0 \\
x=2 &
\end{aligned}
$$

Number Line

(1) f is CD in $(-\infty, 2)$.
(2) f is CU in $(2, \infty)$.
(3) f has no inflection point at $x=2$ since it is not in the domain of $f(x)$.

Exercise 10

Sketch the function

$$
y=f(x)=\frac{4 x}{x^{2}-1}
$$

