Section 4.6
 Optimization Problem
 2 Lectures

Dr. Abdulla Eid
College of Science

MATHS 101: Calculus I

Second Derivative Test

Theorem 1
(Second Derivative Test) Suppose $f^{\prime}(c)=0$, then
(1) If $f^{\prime \prime}(c)<0$, then f has a local maximum at c.
(2) If $f^{\prime \prime}(c)>0$, then f has a local minimum at c.

Notes:

- If $f^{\prime \prime}(c)=0$, then we say the second derivative test is inconclusive! and in that case we need to use the first derivative test.
- This is very useful for this section to check quickly if we have a maximizer or minimizer.

Example 2

Find the local maximum and local minimum (if any) using the second derivative test.

$$
f(x)=x^{3}-12 x+1
$$

Solution:
We find the derivatives first which are

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-12 \\
f^{\prime \prime}(x)=6 x
\end{array}
$$

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
f^{\prime}(x)=0
$$

$$
\text { numerator }=0
$$

$$
3 x^{2}-12=0
$$

$$
x=-2 \text { or } x=2
$$

$$
\begin{aligned}
& \qquad f^{\prime}(x) \text { does not exist } \\
& \text { denominator }=0 \\
& 1=0 \\
& \text { Always False } \\
& \text { No Solution }
\end{aligned}
$$

Second Derivative Test

$$
f^{\prime \prime}(-2)=6(-2)=-12<0
$$

So $x=-2$ is a local maximizer with maximum $f(-2)=$.

$$
f^{\prime \prime}(2)=6(2)=-2>0
$$

So $x=2$ is a local minimizer with minimum $f(2)=$.

Exercise 3

Find the local maximum and local minimum (if any) using the second derivative test.

$$
f(x)=7-2 x^{4}
$$

Solution:
We find the derivatives first which are

$$
\begin{array}{r}
f^{\prime}(x)=-8 x^{3} \\
f^{\prime \prime}(x)=-24 x^{2}
\end{array}
$$

To find the critical points, we find where the first derivative equal to zero or does not exist.
$f^{\prime}(x)$ does not exist

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
-8 x^{3} & =0 \\
x & =0
\end{aligned}
$$

Second Derivative Test

$$
f^{\prime \prime}(0)=-246(0)=0
$$

So the second derivative test is inconclusive! and we apply the first derivative test.

Example 4

Let $f(x)$ be continuous function and have critical numbers 1 and 2 . The second derivative is given by $f^{\prime \prime}(x)=3 x^{2}-16 x+17$. Where does f have a local maximum or local minimum?

Solution:

$$
f^{\prime \prime}(1)=3(1)^{2}-16(1)+17=4>0
$$

So $x=1$ is a local minimizer.

$$
f^{\prime \prime}(2)=3(2)^{2}-16(2)+17=-3
$$

So $x=2$ is a local maximizer.

Example 5

What is the smallest perimeter possible for a rectangle whose area is 4 cm^{2} ? What are the dimensions?

Solution:
Given: Area $=4 \Rightarrow A=4=\ell w \Rightarrow \ell=\frac{4}{w}$

Required: Minimize Perimeter

$$
\text { Required: Minimize } \begin{aligned}
P & =2 \ell+2 w \\
P & =2 \frac{4}{w}+2 w \\
P & =\frac{8}{w}+2 w
\end{aligned}
$$

We find the derivatives first which are

$$
\begin{aligned}
P^{\prime} & =\frac{-8}{w^{2}}+2=\frac{-8+2 w^{2}}{w^{2}} \\
P^{\prime \prime} & =\frac{16}{w^{3}}
\end{aligned}
$$

Critical Points

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
\begin{aligned}
P^{\prime}(x) & =0 \\
\text { numerator } & =0 \\
-8+2 w^{2} & =0 \\
w=2 & \text { or } w=-2(\text { rejected })
\end{aligned}
$$

$$
\text { denominator }=0
$$

$$
w^{2}=0
$$

$$
w=0(\text { rejected })
$$

Maximum or Minimum

To find out whether $w=2$ is a maximizer or minimizer, we will use the second derivative test. so we check

$$
P^{\prime \prime}(2)=\frac{16}{(2)^{3}}>0
$$

So $w=2 \mathrm{~cm}$ is a local minimizer with minimizer length $\ell=\frac{4}{2}=2 \mathrm{~cm}$ and minimum perimeter $P(2)=8 \mathrm{~cm}$.

Exercise 6

Find the largest area of a rectangle whose perimeter is 32 cm .

Example 7

Determine the dimensions of the rectangle of the largest area that can be inscribed in the right triangle with sides 3,4 , and 5 ?.

Solution:
Given: $\tan \theta=\frac{4}{3}=\frac{\ell}{3-w} \Rightarrow 4(3-w)=3 \ell \Rightarrow \ell=\frac{4}{3}(3-w)$

Required: Maximize Area
Required: Maximize $A=\ell w$

$$
\begin{aligned}
& P=\frac{4}{3}(3-w) w \\
& P=4 w-\frac{4}{3} w^{2}
\end{aligned}
$$

We find the derivatives first which are

$$
\begin{aligned}
A^{\prime} & =4-\frac{8}{3} w \\
P^{\prime \prime} & =\frac{-8}{3}
\end{aligned}
$$

Critical Points

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
\begin{array}{rlr}
A^{\prime}(x) & =0 & A^{\prime}(x) \text { does not exist } \\
\text { numerator } & =0 & \text { denominator }
\end{array}=0
$$

Maximum or Minimum

To find out whether $w=\frac{3}{2}$ is a maximizer or minimizer, we will use the second derivative test. so we check

$$
A^{\prime \prime}\left(\frac{3}{2}\right)=\frac{-8}{3}<0
$$

So $w=\frac{3}{2} \mathrm{~cm}$ is a local maximizer with maximizer length $\ell=\frac{4}{3}\left(3-\frac{3}{2}\right)=2 \mathrm{~cm}$ and maximum perimeter $P(2)=3 \mathrm{~cm}^{2}$.

Example 8

Find the point on the curve $y=\sqrt{x}$ that is closest to the point $(3,0)$
Solution:
Given: $y=\sqrt{x}$
Required: minimum distance between the curve and the point
Required: minimize $D=(x-3)^{2}+(y-0)^{2}$

$$
\begin{aligned}
& D=x^{2}-6 x+9+(\sqrt{x})^{2} \\
& D=x^{2}-5 x+9
\end{aligned}
$$

We find the derivatives first which are

$$
\begin{aligned}
D^{\prime} & =2 x-5 \\
D^{\prime \prime} & =2
\end{aligned}
$$

Critical Points

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
\begin{aligned}
& D^{\prime}(x)=0 \\
& \text { numerator }=0 \\
& 2 x-5=0 \\
& x=\frac{5}{2}
\end{aligned}
$$

$D^{\prime}(x)$ does not exist
denominator $=0$
$1=0$
Always False
No Solution

Maximum or Minimum

To find out whether $x=\frac{5}{2}$ is a maximizer or minimizer, we will use the second derivative test. so we check

$$
D^{\prime \prime}\left(\frac{5}{2}\right)=2>0
$$

So $x=\frac{5}{2}$ is a local minimizer with a minimum distance $D=2.75$.

Exercise 9

Find the point on the curve $y^{2}=\frac{1}{2} x^{3}$ that is closest to the point $(5,0)$

Example 10

What is the minimum vertical distance between the curves $y=x^{2}+1$ and $y=x-x^{2}$.

Solution:

Required: minimum distance

$$
\text { Required: minimize } \begin{aligned}
D & =\left(x^{2}+1\right)-\left(x-x^{2}\right) \\
D & =2 x^{2}-x+1
\end{aligned}
$$

We find the derivatives first which are

$$
\begin{aligned}
D^{\prime} & =4 x-1 \\
D^{\prime \prime} & =4
\end{aligned}
$$

Critical Points

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
\begin{gathered}
D^{\prime}(x)=0 \\
\text { numerator }=0 \\
4 x-1=0 \\
x=\frac{1}{4}
\end{gathered}
$$

$D^{\prime}(x)$ does not exist
denominator $=0$
$1=0$
Always False
No Solution

Maximum or Minimum

To find out whether $x=\frac{1}{4}$ is a maximizer or minimizer, we will use the second derivative test. so we check

$$
D^{\prime \prime}\left(\frac{1}{4}\right)=4>0
$$

So $x=\frac{1}{4}$ is a local minimizer with a minimum distance $D=\frac{13}{16}$.

Exercise 11

What is the minimum vertical distance between the curves $y=3 x^{2}+6 x+8$ and $y=2 x+2$.

Example 12

Find a number for which the sum of it and its reciprocal is the smallest possible.

Solution:
Given: Nothing

Required: Minimize Sum

$$
\text { Required: Minimize } S=x+\frac{1}{x}
$$

We find the derivatives first which are

$$
\begin{aligned}
S^{\prime} & =1+\frac{-1}{x^{2}}=\frac{x^{2}-1}{x^{2}} \\
P^{\prime \prime} & =\frac{2}{x^{3}}
\end{aligned}
$$

Critical Points

To find the critical points, we find where the first derivative equal to zero or does not exist.

$$
S^{\prime}(x)=0
$$

$$
\text { numerator }=0
$$

$$
\begin{aligned}
& x^{2}-1=0 \\
& x=1 \text { or } x=-1
\end{aligned}
$$

$S^{\prime}(x)$ does not exist
denominator $=0$

$$
x^{2}=0
$$

$$
x=0(\text { rejected })
$$

Maximum or Minimum

To find out whether $x=1$ or $x=-1$ is a maximizer or minimizer, we will use the second derivative test. so we check

$$
S^{\prime \prime}(1)=\frac{2}{(1)^{3}}>0
$$

So $x=1 \mathrm{~cm}$ is a local minimizer with minimum sum $S(1)=2 \mathrm{~cm}$.

Exercise 13

Find a positive number for which the sum of its reciprocal and four times its square is the smallest possible.

Example 14

For what values of a make the function

$$
f(x)=x^{2}+a x
$$

have a local minimum at $x=2$.
Solution:
We find the derivatives first which are

$$
\begin{aligned}
f f^{\prime}(x) & =2 x+a \\
f \text { has a local minimum at } x=2 & \Rightarrow f^{\prime}(2)=0 \Rightarrow 4+a=0
\end{aligned}
$$

Solving the above equation yield that $a=-4$

Example 15

For what values of a and b make the function

$$
f(x)=x^{3}+a x^{2}+b x
$$

have a local maximum at $x=-1$ and local minimum at $x=3$.
Solution:
We find the derivatives first which are

$$
f^{\prime}(x)=3 x^{2}+2 a x+b
$$

f has a local mamximum at $x=-1 \Rightarrow f^{\prime}(-1)=0 \Rightarrow 3-2 a+b=0$ f has a local minimum at $x=3 \Rightarrow f^{\prime}(3)=0 \Rightarrow 27+6 a+b=0$

Solving the above two equations yield that $a=3$ and $b=3$

Exercise 16

Solve the previous example, but this time, assume the function has a local minimum at $x=4$ and a point of inflection at $x=1$.

