Extra
 2 Lectures

Dr. Abdulla Eid

College of Science

MATHS 101: Calculus I

3 - Intermediate Value Theorem (Application of Calculus)

Here we give an application of calculus to finding the location of a root to an equation.

Definition 1
A number c is called a root (zero) for a function f if

$$
f(c)=0
$$

Theorem 2
Let f be a continuous function on an interval $[a, b]$ such that $f(a)$ and $f(b)$ have different signs, then there exist a root $c \in(a, b)$ such that $f(c)=0$.

Example 3

Show there exists a root for $x^{3}-x-1=0$ between 1 and 2 .
Solution: Note that the function is continuous (polynomial) and we have

$$
f(1)=-1<0 \quad f(2)=5>0
$$

Therefore, by the IVT, there must be a root $c \in(1,2)$ such that $f(c)=0$. The IVT does not tell us how to find that root.

Exercise 4

Show there exists a root for $x^{3}-3 x-1=0$.
Solution: Note that the function is continuous (polynomial). Here we do not have an interval, so we need to find a suitable interval (two end-points with different sign). One choice is 0 , so we have $f(0)=-1<0$. Now we look for some other number with a positive value, for example, $f(2)=1>0$. Therefore, by the IVT, there must be a root $c \in(0,2)$ such that $f(c)=0$. The IVT does not tell us how to find that root.

Example 5

Show there exist a number $c \in(0,1)$ such that $\sqrt[3]{c}=1-c$.
Solution: The problem can be translate as to find a number $c \in(0,1)$ such that $\sqrt[3]{c}-1+c=0$, i.e., we need to show that there is a root for the equation $\sqrt[3]{x}-1+x=0$. Note that the function is continuous. We have $f(0)=-1<0$ and $f(1)=1>0$ Therefore, by the IVT, there must be a root $c \in(0,1)$ such that $f(c)=0$, i.e., we have $\sqrt[3]{c}=1-c$.

Exercise 6

(Challenging Problem) The fixed point theorem Suppose f is a continuous function on $[0,1]$ such that $0 \leq f(x) \leq 1$. Show there exist $c \in(0,1)$ such that $f(c)=c$.
(Hint: Apply IVT to $g(x)=f(x)-x$).

Netwon's Method

Recall:

Theorem 7
(Intermediate Value Theorem) Let f be a continuous function on an interval $[a, b]$ such that $f(a)$ and $f(b)$ have different signs, then f must have a root in $[a, b]$, i.e., there exists $c \in[a, b]$ such that $f(c)=0$.

Recall that the intermediate value theorem tells us that there will be a root, but does not tell us how to find it. We will use Newton's method to approximate the root.
(1) Guess an initial approximation x_{0} to the root.
(2) Determine a new approximation using the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Example 8

Consider the equation $f(x)=x^{7}+2 x^{5}+x^{3}+14 x+1$.
(1) Use the intermediate value theorem to show that the equation above has a root.
(2) Use Rolle's theorem theorem to show that the equation above has exactly one root.
(3) Use the Newton's method to approximate a root of the equation above with $x_{0}=1$.

Example 9

Consider the equation $x^{2}-2=0$.
(1) Use the intermediate value theorem to show that the equation above has a root in $[1,2]$.
(2) Use the Newton's method to approximate a root of the equation above in $[1,2]$ with $x_{0}=1$.

Solution: (1) Let $f(x)=x^{2}-2$ (continuous) and we have $f(1)=-1<0$ while $f(2)=2>0$, therefore by the intermediate value theorem, there must be a root in $[1,2]$.
(2) Let $x_{0}=1$, we have $f^{\prime}(x)=2 x$ and

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=1-\frac{(1)^{2}-2}{2(1)}=1.5 \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1.5-\frac{(1.5)^{2}-2}{2(1.5)}= \\
& x_{3}=x_{3}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=-\frac{()^{2}-2}{2()}=
\end{aligned}
$$

