Section 1.1
 System of Linear Equations

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

(1) Define system of linear equations and their solutions.
(2) To represent system of linear equations by several ways.
(3) To solve system of linear equations using Gaussian-Jordan Elimination.
(9) To solve system of linear equations using the inverse of a matrix.
(6) To solve system of linear equations using Cramer's rule.

Linear equations

Definition 1

A linear equation in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is an equation of the form

$$
a_{1} x_{1}++a_{2} x_{2}++\cdots+a_{n} x_{n}=b
$$

where b and the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers.
Note: A linear equations is of degree one in the variables.

Example 2

Which of the following are linear equations and why?
(1) $4 x_{1}+3 x_{2}=-6$
(2) $x_{1}+x_{2}-5=x_{3}+2 x_{1}$
(3) $3 x+2 y-z+w=5$
(9) $x_{1}+x_{2}=x_{1} x_{2}$
(5) $x_{2}=\sqrt{6} x_{1}+x_{3}$
(6) $x_{2}=6 \sqrt{x_{1}}+x_{3}$

System of linear equations

Definition 3

A system of linear equation or (linear system) in the variables $x_{1}, x_{2}, \ldots, x_{n}$ is a finite collection of linear equations.

Example 4

$$
\begin{array}{rcr}
-x_{1}+x_{2}=5 & 2 x-7 y=-1 & 2 x_{1}-x_{2}+3 x_{3}=8 \\
x_{1}+5 x_{2}=1 & x+3 y=6 & x_{1}+3 x_{2}-2 x_{3}=7 \\
& & -3 x_{1}+x_{3}=3
\end{array}
$$

General definition of linear system

Definition 5

A general linear system of m equations and n variables $x_{1}, x_{2}, \ldots, x_{n}$ can be written as

$$
\begin{aligned}
& a_{11} x_{1}++a_{12} x_{2}++\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}++a_{22} x_{2}++\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}++a_{m 2} x_{2}++\cdots+a_{m n} x_{n}=b_{m}
$$

Solution to a system of linear equations

Definition 6

A solution is a list of numbers $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ that makes each equation a true statement when we substitute $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}$. A solution set is the set of all possible solution to a linear system.

Example 7

Show that $(3,2)$ is a solution to the system

$$
\begin{array}{r}
3 x_{1}-x_{2}=7 \\
-x_{1}+4 x_{2}=5
\end{array}
$$

Example 8

Show that $(-1,0,2)$ is a solution to the system

$$
\begin{array}{r}
x+y-z=1 \\
3 x+y=-3
\end{array}
$$

Solution to a system of linear equations

Example 9

Show that $(1+5 t, 3-t, t)$ is a solution to the system for any $t \in \mathbb{R}$.

$$
\begin{array}{r}
x_{1}+6 x_{2}+x_{3}=19 \\
x_{1}-5 x_{3}=1 \\
3 x_{1}-x_{2}+16 x_{3}=0
\end{array}
$$

The solution of linear system that depends on free variable is called parametric solution

Representing Linear System as augmented matrix and matrix form

Example 10

$$
\begin{array}{r}
-x_{1}+x_{2}=5 \\
x_{1}+5 x_{2}=1
\end{array}
$$

$$
\begin{aligned}
& 2 x-7 y=-1 \quad 2 x_{1}-x_{2}+3 x_{3}=8 \\
& x+3 y=6 \quad x_{1}+3 x_{2}-2 x_{3}=7 \\
& -3 x_{1}+x_{3}=3
\end{aligned}
$$

Solving System of Linear Equations using elementary row operations
Example 11
Solve the system

$$
\begin{aligned}
2 x-7 y & =-1 \\
x+3 y & =6
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
2 & -7 & -1 \\
1 & 3 & 6
\end{array}\right), & R_{1} \leftrightarrow R_{2} \\
\left(\begin{array}{cc|c}
1 & 3 & 6 \\
2 & -7 & -1
\end{array}\right), & R_{2} \rightarrow R_{2}-2 R_{1} \\
\left(\begin{array}{ccc}
1 & 3 & 6 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
2-2(1) & -7-2(3) & -1-2(6)
\end{array}\right), \\
& \left(\begin{array}{cc|c}
1 & 3 & 6 \\
0 & -13 & -13
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2} \\
& \left(\begin{array}{ll|l}
1 & 3 & 6 \\
0 & 1 & 1
\end{array}\right) R_{1} \rightarrow R_{1}-3 R_{2} \\
& \left(\begin{array}{cc|c}
1-3(0) & 3-3(1) & 6-3(1) \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=3$ and $y=1$ and thus the solution set is $\{(3,1)\}$

Example 12
Solve the system

$$
\begin{aligned}
x+y-z & =7 \\
4 x+6 y-4 z & =8 \\
x-y-5 z & =23
\end{aligned}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
4 & 6 & -4 & 8 \\
1 & -1 & -5 & 23
\end{array}\right), \quad \begin{array}{c}
R_{2} \rightarrow R_{2}-4 R_{1}
\end{array} \quad R_{3} \rightarrow R_{3}-R_{1} \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
4-4(1) & 6-4(1)) & -4-4(-1) & 8-4(7) \\
1-1 & -1-1 & -5-(-1) & 23-7
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 2 & 0 & -20 \\
0 & -2 & -4 & 16
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{2} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & -2 & -4 & 16
\end{array}\right), \quad R_{3} \rightarrow R_{3}+2 R_{2} \\
& \left(\begin{array}{cccc}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & -2+2(1) & -4+2(0) & 16+2(-10)
\end{array}\right) \\
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & -4 & -4
\end{array}\right) \quad R_{3} \rightarrow \frac{1}{-4} R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 1 & -1 & 7 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}+R_{3} \\
& \left(\begin{array}{cccc:c}
1 & 1(0) & 1+1(0) & -1+1(1) & 7+1(1) \\
(00 & 1 & 0 & -10 \\
& 0 & 0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 0 & 8 \\
0
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 1 & 0 & 8 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right) \quad R_{1} \rightarrow R_{1}-R_{3} \\
& \left(\begin{array}{ccc:c}
1 & 0 & 0 & 18 \\
0 & 1 & 0 & -10 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So $x=18, y=-10$, and $z=1$. Solution Set $=\{(18,-10,1)\}$.

Example 13

Solve the system

$$
\begin{array}{r}
x+4 y=9 \\
3 x-y=6 \\
2 x-2 y=4
\end{array}
$$

Solution: First we write the augmented matrix of the system which is

$$
\begin{aligned}
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3 & -1 & 6 \\
2 & -2 & 4
\end{array}\right), \quad R_{2} \rightarrow R_{2}-3 R_{1} \\
& R_{3} \rightarrow R_{3}-2 R_{1} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
3-3(1) & -1-3(4) & 6-3(9) \\
2-2(1) & -2-2(4) & 4-2(9)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & -13 & -21 \\
0 & -10 & -14
\end{array}\right) \quad R_{2} \rightarrow \frac{1}{-13} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc|c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10 & -14
\end{array}\right), \quad R_{3} \rightarrow R_{3}+10 R_{2} \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & -10+10(1) & -14+10\left(\frac{-21}{-13}\right)
\end{array}\right) \\
& \left(\begin{array}{cc:c}
1 & 4 & 9 \\
0 & 1 & \frac{-21}{-13} \\
0 & 0 & \frac{28}{13}
\end{array}\right)
\end{aligned}
$$

We have $0=\frac{28}{13}$ which is a false statement and thus there will be no solution.

Example 14
Solve the system

$$
\begin{aligned}
x-y+2 z & =5 \\
2 x-2 y+4 z & =10 \\
3 x-3 y y+6 z & =15
\end{aligned}
$$

Solution:

Example 15
Solve the system

$$
\begin{aligned}
x+y+z & =9 \\
x+5 y+10 z & =44
\end{aligned}
$$

Solution:

Types of solutions for a linear system

- Consistent. It has a solution.
(1) Unique solution. No free variables.
(2) Infinitely many solutions
- Inconsistent. It has no solution.

Example 16

Find the value of h such that the system has (a) unique solution, (b) no solution, (c) infinitely many solutions.

$$
\begin{array}{r}
x+h y=4 \\
3 x+6 y=8
\end{array}
$$

Example 17

Find the value of h, k such that the system has (a) unique solution, (b) no solution, (c) infinitely many solutions.

$$
\begin{aligned}
& x_{1}+h y=2 \\
& 4 x+8 y=k
\end{aligned}
$$

What is the height of the table?

Network Flow

Lines in 2-D

Example 18

Solve the system geometrically

$$
2 x-7 y=2, \quad x+3 y=6
$$

Lines in 2-D

Example 19

Solve the system geometrically

$$
2 x+6 y=2, \quad x+3 y=6
$$

Lines in 2-D

Example 20

Solve the system geometrically

$$
2 x+6 y=12, \quad x+3 y=6
$$

Lines in 3-D

Example 21

Solve the system geometrically

$$
x+2 y-z=3, \quad x+3 y+5 z=-1
$$

Solving Linear System using the inverse of a matrix

Example 22

Solve

$$
\begin{aligned}
& 3 x+y=2 \\
& 4 x+y=3
\end{aligned}
$$

Solution: This system can be written in a matrix multiplication form as

$$
\begin{aligned}
\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} & =\binom{2}{3} \\
A\binom{x}{y} & =\binom{2}{3} \\
A^{-1} A\binom{x}{y} & =A^{-1}\binom{2}{3} \\
I_{2}\binom{x}{y} & =A^{-1}\binom{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{x}{y}=A^{-1}\binom{2}{3}=\left(\begin{array}{cc}
-1 & 1 \\
4 & -3
\end{array}\right)\binom{2}{3} \\
& \binom{x}{y}=\binom{1}{-1}
\end{aligned}
$$

Exercise 23

Solve the following system using the inverse matrix method.

$$
\begin{array}{r}
2 x-3 y=9 \\
4 x+y=1
\end{array}
$$

Cramer's Rule

Theorem 24

If $A \mathbf{x}=\mathbf{b}$ is a system of n linear equations in n unknowns such that $\operatorname{det}(A)=\neq 0$, then the system has a unique solution given by

$$
x_{1}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}, x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, \ldots x_{n}=\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)}
$$

where A_{j} is the matrix obtained by replacing the entries in the j th column of A by the entries in the matrix

$$
\mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
\cdot \\
b_{n}
\end{array}\right)
$$

Example 25

Solve using Cramer's rule the following system of linear equations

$$
\begin{aligned}
& 3 x_{1}+x_{2}=2 \\
& 4 x_{1}+x_{2}=3
\end{aligned}
$$

Solution:

Example 26

Solve using Cramer's rule the following system of linear equations

$$
\begin{aligned}
3 x_{1}+5 x_{2} & =7 \\
6 x_{1}+2 x_{2}+4 x_{3} & =10 \\
-x_{1}+4 x_{2}-3 x_{3} & =0
\end{aligned}
$$

Solution:

The equation $A \mathbf{x}=\mathbf{b}$

Theorem 27
The following are equivalent:
(1) A is invertible.
(2) $\operatorname{det}(A) \neq 0$.
(3) The reduced row echelon form is I_{n}.
(9) $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
(6) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $n \times 1$ matrix \mathbf{b}.

