Section 2.2 Determinant of a matrix Using row operations

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- It o define the determinant of a matrix.
- To find the determinant of a matrix using cofactor expansion (Section 2.1).
- **③** To find the determinant of a matrix using row reduction (Section 2.2).
- Explore the properties of the determinant and its relation to the inverse. (Section 2.3)
- To solve linear system using the Cramer's rule. (Section 2.3)

Theorem 1

If A is an $n \times n$ triangular matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product of the entries on the main diagonal of the matrix, that is det(A) = $a_{11}a_{22}...a_{nn}$.

Theorem 2

(Row operations and determinant) If A is an $n \times n$ matrix.

• If $B \sim A$ by multiplying a row of A by k, then

 $\det(B) = k \det(A)$

2 If $B \sim A$ by exchanging two rows of A, then

$$\det(B) = -\det(A)$$

§ If $B \sim A$ by adding a multiple of one row to another row of A, then

Example 3

Find $\det(A)$ for

$$A = \begin{pmatrix} 1 & 2 & 4 \\ -3 & 3 & 5 \\ 7 & 0 & 6 \end{pmatrix}$$

Solution:

Dr. Apquils Ele

Example 4

Find det(A) for

$$A = \begin{pmatrix} 5 & 2 & -2 & 0 \\ 3 & 2 & -2 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & -1 & 5 & 7 \end{pmatrix}$$

Solution:

		$\mathbf{\nabla}$
	0	
	Pr -	
Э,		
$\mathbf{\nabla}$		