Section 2.3 Determinant of a matrix

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:

- It define the determinant of a matrix.
- To find the determinant of a matrix using cofactor expansion (Section 2.1).
- **③** To find the determinant of a matrix using row reduction (Section 2.2).
- Explore the properties of the determinant and its relation to the inverse. (Section 2.3)
- To solve linear system using the Cramer's rule. (Section 2.3)
- The equation $A\mathbf{x} = \mathbf{b}$ (Section 2.3)

Properties of the determinant

• If $det(A) \neq 0$, then A has an inverse (invertible)

Assume A is 5×5 matrix for which det(A) = -3 Find the following:

• det
$$((2A)^{-1})$$

Use determinant to decide whether the given matrix is invertible or not

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 3 \\ -1 & 0 & 5 \end{pmatrix}$$

	10
	Xn.
~	V0.
21.	
\sim	

Find the value(s) of k for which A is invertible.

$$A = \begin{pmatrix} 3 & k \\ k & 3 \end{pmatrix}, \qquad A = \begin{pmatrix} 2 & 1 & 0 \\ k & 2 & k \\ 2 & 4 & 2 \end{pmatrix}$$

Solution:

Or. Applullar

Adjoint matrix

Definition 4

Let $A \in Mat(n, n, \mathbb{R})$ and C_{ij} is the cofacotr of a_{ij} , then the matrix with entries (C_{ij}) is called the **matrix of cofactors from** A. The transpose of this matrix is called the **adjoint** of A and is denoted by adj(A).

Example 5

Use the adjoint method to find the inverse (if exists) to the following matrices:

$$A = \begin{pmatrix} -2 & 4 & 3\\ 1 & 2 & 0\\ 2 & -1 & -2 \end{pmatrix}$$

Theorem 6

$$A^{-1} = \frac{1}{\det(A)} \mathrm{adj}(A)$$

Example 7

Use the adjoint method to find the inverse (if exists) to the following matrices:

$$A = \begin{pmatrix} -2 & 4 & 3\\ 1 & 2 & 0\\ 2 & -1 & -2 \end{pmatrix}$$

Use the adjoint method to find the inverse (if exists) to the following matrices:

$$A = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 3 & 2 \end{pmatrix}$$

	\sim
	10
	Xn.
	0
\mathcal{O}_{ℓ} .	

Use the adjoint method to find the inverse (if exists) to the following matrices:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

	× ×
	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	b _r
0	٠

Cramer's Rule

Theorem 10

If $A\mathbf{x} = \mathbf{b}$ is a system of *n* linear equations in *n* unknowns such that $det(A) = \neq 0$, then the system has a unique solution given by

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots x_n = \frac{\det(A_n)}{\det(A)},$$

where A_j is the matrix obtained by replacing the entries in the *j*th column of A by the entries in the matrix

$$\mathbf{p} = \begin{pmatrix} b_1 \\ b_2 \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ b_n \end{pmatrix}$$

Solve using Cramer's rule the following system of linear equations

 $3x_1 + x_2 = 2$ $4x_1 + x_2 = 3$

Solve using Cramer's rule the following system of linear equations

 $3x_1 + 5x_2 = 7$ $6x_1 + 2x_2 + 4x_3 = 10$ $-x_1 + 4x_2 - 3x_3 = 0$

The equation $A\mathbf{x} = \mathbf{b}$

Theorem 13

The following are equivalent:

- A is invertible.
- $each det(A) \neq 0.$
- The reduced row echelon form is I_n.
- $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- **5** $A\mathbf{x} = \mathbf{b}$ has a unique solution for every $n \times 1$ matrix \mathbf{b} .