Section 4.2 Subspaces

Dr. Abdulla Eid

College of Science

MATHS 211: Linear Algebra

Goal:
(1) Define subspaces.
(2) Subspace test.
(3) Linear Combination of elements.
(9) Subspace generated by elements (Span).

Subspace

Definition 1

Let V be a vector space. A subset W of V is called a subspace of V if W is itself a vector space under the same operations of V.

Subspace Test

Theorem 2
If W is a subset of V such that
(1) $0 \in W$.
(2) For all $\mathbf{u}, \mathbf{v} \in W$, we have $\mathbf{u}+\mathbf{v} \in W$. (Closed under addition - Axiom (1))
(3) For all $\mathbf{u} \in W, k \in \mathbb{R}$, we have $k \mathbf{u} \in W$.
(Closed under scalar multiplication - Axiom (6))
Then W is a subspace of V.
In short, we need to check that the zero is in W and W is closed under + and .

Zero Subspace

Example 3

Let V be any vector space. Let $W=\{\mathbf{0}\}$. Then W is a subspace of V.
We call W the zero subspace of V.

Lines through the origin

Example 4

Let m be a fixed real number. Consider the subset of $V=\mathbb{R}^{2}$

$$
W:=\left\{\left.\binom{x}{m x} \right\rvert\, x \in \mathbb{R}\right\}
$$

Then W is a subspace of \mathbb{R}^{2}

Example 5

Determine whether the following is a subspace of \mathbb{R}^{3} or not.

$$
W:=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, c=a-b\right\}
$$

Example 6

Determine whether the following is a subspace of \mathbb{R}^{3} or not.

$$
W:=\left\{\left.\left(\begin{array}{l}
a \\
1 \\
0
\end{array}\right) \right\rvert\, a \in \mathbb{R},\right\}
$$

Example 7

Determine whether the following is a subspace of $\operatorname{Mat}(n, n, \mathbb{R})$ or not.

$$
W:=\left\{A \in \operatorname{Mat}(n, n, \mathbb{R}) \mid A^{T}=-A\right\}
$$

Example 8

Determine whether the following is a subspace of $\operatorname{Mat}(n, n, \mathbb{R})$ or not.

$$
W:=\{A \in \operatorname{Mat}(n, n, \mathbb{R}) \mid \operatorname{tr}(A)=0\}
$$

Example 9

Determine whether the following is a subspace of \mathbb{P}_{3} or not.

$$
W:=\left\{a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3} \mid a_{1}=a_{2}\right\}
$$

Example 10

Determine whether the following is a subspace of $\operatorname{Maps}(\mathbb{R}, \mathbb{R})$ or not.

$$
\begin{aligned}
C(-\infty, \infty) & :=\{f \mid f \text { is continuous }\} \\
C^{1}(-\infty, \infty) & :=\{f \mid f \text { is differentiable }\} \\
C^{2}(-\infty, \infty) & :=\{f \mid f \text { is twice differentiable }\} \\
C^{\infty}(-\infty, \infty) & :=\{f \mid f \text { is infinitely many differentiable }\}-\text { Smooth function }
\end{aligned}
$$

Give an example of a function in $C^{\infty}(-\infty, \infty)$?

Intersection of subspaces

Theorem 11
Let W_{1}, W_{2} be two subspaces of a vector space V. Then, the intersection of W_{1} and W_{2} is also a subspace of V.

Theorem 12

Let $W_{1}, W_{2}, \ldots, W_{n}$ be two subspaces of a vector space V. Then, the intersection of $W_{1}, W_{2}, \ldots, W_{n}$ is also a subspace of V.

Union of subspaces

Example 13

Let W_{1}, W_{2} be two subspaces of a vector space \mathbb{R}^{2} that are given by

$$
W_{1}=\left\{\left.\binom{x}{0} \right\rvert\, x \in \mathbb{R}\right\}, \quad W_{1}=\left\{\left.\binom{0}{y} \right\rvert\, y \in \mathbb{R}\right\}
$$

Verify that W_{1}, W_{2} are subspaces but $W_{1} \cup W_{2}$ is not.

Do HOMEWORK 1

Linear Combination

Definition 14

If w is a vector in a vector space V, then w is said to be a linear combination of the vectors v_{1}, \ldots, v_{n} if w can be expressed in the form

$$
w=k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n}
$$

where $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{R}$ which are called the coefficients of the linear combination.

Example 15

Express the following as linear combination of $\mathbf{u}=(2,1,4)$, $\mathbf{v}=(1,-1,3)$, and $\mathbf{w}=(3,2,5)$.
(1) $(6,11,6)$
(2) $(7,8,9)$

Solution

Example 16

Let $\mathbf{u}=(1,-3,2), \mathbf{v}=(1,0,-4)$. Determine whether the following is a linear combination of \mathbf{u} and \mathbf{v}.
(1) $(0,-3,6)$
(2) $(1,6,-16)$

Example 17

Express the following as linear combination of $A=\left(\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right)$,
$B=\left(\begin{array}{cc}0 & 2 \\ -2 & 4\end{array}\right)$, and $C=\left(\begin{array}{cc}1 & 1 \\ -2 & 5\end{array}\right)$
(1) $\left(\begin{array}{cc}2 & 5 \\ -2 & 4\end{array}\right)$
(2) $\left(\begin{array}{cc}1 & 3 \\ -4 & 1\end{array}\right)$

Solution

Example 18

Express the following as linear combination of $P_{1}=2+X+4 x^{2}$, $P_{2}=1-X+3 x^{2}$, and $P_{3}=3+2 X+5 X^{2}$.
(1) 0
(2) $2-X+6 X^{2}$

Solution

Subset generated by elements is a subspace

Theorem 19

If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a nonempty set of vectors in a vector space V. Then,
(1) The set W of all possible linear combinations of vectors in S is a subspace, i.e.,

$$
W=\left\{k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{n} v_{n} \mid k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{R}\right\}
$$

(2) The set W is the "smallest" subspace of V that contain all of the vectors in S in the sense of containment relationship.

We denote the set W above by

$$
W=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \text { or } W=\operatorname{span}(S) \text { or } W=\left\langle v_{1}, \ldots, v_{n}\right\rangle
$$

Proof

Recall: The equation $A \mathbf{x}=\mathbf{b}$

Theorem 20

The following are equivalent:
(1) A is invertible.
(2) $\operatorname{det}(A) \neq 0$.
(3) The reduced row echelon form is I_{n}.
(9) $A \mathbf{x}=\mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b}.
(6) $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $n \times 1$ matrix \mathbf{b}.

Spanning set of the whole space

Example 21

Determine whether $\mathbf{v}_{1}=(2,-1,2), \mathbf{v}_{2}=(4,1,3)$, and $\mathbf{v}_{3}=(2,2,1)$ span \mathbb{R}^{3}.

Solution

Spanning set of the whole space

Example 22

Determine whether $P_{1}=1+X+X^{2}, P_{2}=3+X, P_{3}=5-X+4 X^{2}$, and $P_{4}=-2-2 X+2 X^{2}$ span \mathbb{P}_{2}.

Solution

Standard spanning sets

Note:

- The standard spanning set for \mathbb{R}^{2} is e_{1}, e_{2}, where

$$
e_{1}=(1,0) \text { and } e_{2}=(0,1)
$$

- The standard spanning set for \mathbb{R}^{3} is e_{1}, e_{2}, e_{3}, where

$$
e_{1}=(1,0,0), e_{2}=(0,1,0) \text { and } e_{3}=(0,0,1)
$$

- The standard spanning set for \mathbb{R}^{n} is $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$, where

$$
\begin{aligned}
e_{1}=(1,0, \ldots, 0), e_{2} & =(0,1, \ldots, 0), e_{3}=(0,0,1,0, \ldots, 0) \text { and } \\
e_{n} & =(0,0, \ldots, 1)
\end{aligned}
$$

- The standard spanning set for \mathbb{P}_{2} is $1, X, X^{2}$.
- The standard spanning set for \mathbb{P}_{n} is $1, X, X^{2}, \ldots, X^{n}$.
- The standard spanning set for $\operatorname{Mat}(2,2, \mathbb{R})$ is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Spanning set of the subspace

Example 23

Find a spanning set for the following subspace
Let m be a fixed real number. Consider the subset of $V=\mathbb{R}^{2}$

$$
W:=\left\{\left.\binom{x}{m x} \right\rvert\, x \in \mathbb{R}\right\}
$$

Spanning set of the subspace

Example 24

Find a spanning set for the following subspace

$$
W:=\left\{\left.\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, c=a-b\right\}
$$

Spanning set of the subspace

Example 25

Find a spanning set for the following subspace

$$
W:=\left\{A \in \operatorname{Mat}(n, n, \mathbb{R}) \mid A^{T}=-A\right\}
$$

Spanning set of the subspace

Example 26

Find a spanning set for the following subspace

$$
W:=\left\{a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3} \mid a_{1}=a_{2}\right\}
$$

Null Space

Theorem 27
Let $A \in \operatorname{Mat}(m, n, \mathbb{R})$ be a $m \times n$ matrix. The subset W of \mathbb{R}^{n} defined by

$$
W=\{\mathbf{x} \mid A \mathbf{x}=\mathbf{0}\}
$$

is a subspace of \mathbb{R}^{n}.
It is called the null space of A, denoted by $\operatorname{Nul}(A)$ and it is consisting of the solutions to the equation $A \mathbf{x}=\mathbf{0}$.

Example 28

Determine whether the $\mathbf{w}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$ is in the null space of

$$
A=\left(\begin{array}{ccc}
3 & -5 & -3 \\
6 & -2 & 0 \\
-8 & 4 & 1
\end{array}\right)
$$

Spanning set of the subspace

Example 29

Find a spanning set for the null space of

$$
A=\left(\begin{array}{ccc}
2 & -3 & 1 \\
6 & -9 & 3 \\
-4 & 6 & -2
\end{array}\right)
$$

Spanning set of the subspace

Example 30

Find a spanning set for the null space of

$$
A=\left(\begin{array}{ccc}
1 & 4 & 8 \\
2 & 5 & 6 \\
3 & 1 & -4
\end{array}\right)
$$

Do HOMEWORK 1

Equality of spanning sets

Theorem 31
Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $S^{\prime}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}$ be two sets of vectors. Then,

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}
$$

each \mathbf{v}_{i} is a linear combination of \mathbf{w}_{i} and each \mathbf{w}_{i} is a linear combination of the \mathbf{v}_{i}

Example 32

Show that

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
4 \\
3 \\
0
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)\right\}
$$

