Section 4.4 Basis

Dr. Abdulla Eid

College of Science
MATHS 211: Linear Algebra

Goal:

(1) Define a basis of a vector space.
(2) Coordinates relative to a Basis.

Basis

Definition 1
Let V be a vector space. $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is called a basis are if
(1) \mathcal{B} is linearly independent.
(2) \mathcal{B} spans V.

Example 2

Determine whether the vectors $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ form a basis for \mathbb{R}^{3} or not.

This is called the standard basis for \mathbb{R}^{3}.

Example 3

Show that the vectors $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}2 \\ 9 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$ form a basis for \mathbb{R}^{3}.

Homework 4

Example 4

Determine whether the vectors $\mathbf{v}_{1}=2-4 X+X^{2}, \mathbf{v}_{2}=3+2 X-X^{2}$, $\mathbf{v}_{3}=1+6 X-2 X^{2}$ form a basis for P_{2}.

Example 5

Determine whether the vectors $\mathbf{v}_{1}=\left(\begin{array}{cc}3 & 4 \\ 3 & -4\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$\mathbf{v}_{3}=\left(\begin{array}{cc}0 & -8 \\ -12 & -2\end{array}\right)$ form a basis for $\operatorname{Mat}(2,2, \mathbb{R})$.

Theorem 6

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V, then every vector v in V can be written uniquely in the form

$$
v=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

Definition 7

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be basis for V and let w in V with

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

The scalars c_{1}, \ldots, c_{n} are called coordinates of \mathbf{v} in terms of \mathcal{B}. The vector $\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ is called the coordinate vector of \mathbf{v} relative to \mathcal{B}. It is denoted by

$$
(\mathbf{v})_{\mathcal{B}}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Example 8

Let $\mathcal{B}=\left\{\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}5 \\ 0 \\ 0\end{array}\right)\right\}$ be a basis for some subspace of \mathbb{R}^{3}.
Find the coordinate vector of
(1) $\left(\begin{array}{l}3 \\ 4 \\ 3\end{array}\right)$.
(2) $\left(\begin{array}{c}5 \\ -12 \\ 3\end{array}\right)$

Example 9

Let $\mathcal{B}=\left\{1+X, 1+X^{2}, X+X^{2}\right\}$ be a basis for some subspace of \mathbb{P}_{2}. Find the coordinate vector of
(1) $3-X-2 X^{2}$

Homework 4

Example 10
Let $\mathcal{B}=\left\{\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right\}$ be a basis for some subspace of $\operatorname{Mat}(2,2, \mathbb{R})$. Find the coordinate vector of

- $\left(\begin{array}{cc}-5 & 4 \\ 1 & -1\end{array}\right)$

